Neuromorphic Systems Engineering


Book Description

Neuromorphic Systems Engineering: Neural Networks in Silicon emphasizes three important aspects of this exciting new research field. The term neuromorphic expresses relations to computational models found in biological neural systems, which are used as inspiration for building large electronic systems in silicon. By adequate engineering, these silicon systems are made useful to mankind. Neuromorphic Systems Engineering: Neural Networks in Silicon provides the reader with a snapshot of neuromorphic engineering today. It is organized into five parts viewing state-of-the-art developments within neuromorphic engineering from different perspectives. Neuromorphic Systems Engineering: Neural Networks in Silicon provides the first collection of neuromorphic systems descriptions with firm foundations in silicon. Topics presented include: large scale analog systems in silicon neuromorphic silicon auditory (ear) and vision (eye) systems in silicon learning and adaptation in silicon merging biology and technology micropower analog circuit design analog memory analog interchipcommunication on digital buses £/LIST£ Neuromorphic Systems Engineering: Neural Networks in Silicon serves as an excellent resource for scientists, researchers and engineers in this emerging field, and may also be used as a text for advanced courses on the subject.




Neuromorphic Engineering


Book Description

The brain is not a glorified digital computer. It does not store information in registers, and it does not mathematically transform mental representations to establish perception or behavior. The brain cannot be downloaded to a computer to provide immortality, nor can it destroy the world by having its emerged consciousness traveling in cyberspace. However, studying the brain's core computation architecture can inspire scientists, computer architects, and algorithm designers to think fundamentally differently about their craft. Neuromorphic engineers have the ultimate goal of realizing machines with some aspects of cognitive intelligence. They aspire to design computing architectures that could surpass existing digital von Neumann-based computing architectures' performance. In that sense, brain research bears the promise of a new computing paradigm. As part of a complete cognitive hardware and software ecosystem, neuromorphic engineering opens new frontiers for neuro-robotics, artificial intelligence, and supercomputing applications. This book will present neuromorphic engineering from three perspectives: the scientist, the computer architect, and the algorithm designer. We will zoom in and out of the different disciplines, allowing readers with diverse backgrounds to understand and appreciate the field. Overall, the book will cover the basics of neuronal modeling, neuromorphic circuits, neural architectures, event-based communication, and the neural engineering framework. Readers will have the opportunity to understand the different views over the inherently multidisciplinary field of neuromorphic engineering.




Neuromorphic Engineering


Book Description

What Is Neuromorphic Engineering Neuromorphic computing and neuromorphic engineering are both terms that refer to the same thing: the use of very-large-scale integration (VLSI) systems that incorporate electrical analog circuits to simulate neuro-biological structures that are found in the nervous system. Any electronic device that does calculations with the help of artificial neurons that are implemented as physical structures is referred to as a neuromorphic computer or chip. Recently, the word "neuromorphic" has been used to refer to analog, digital, mixed-mode analog/digital VLSI, and software systems that embody models of brain systems. This use of the term has become more common. To actualize the implementation of neuromorphic computing on the hardware level, oxide-based memristors, spintronic memory, threshold switches, and transistors are some of the components that may be used. Training software-based neuromorphic systems of spiking neural networks can be accomplished through the use of error backpropagation, for instance through the utilization of Python-based frameworks like snnTorch, or through the utilization of canonical learning rules from the biological learning literature, for instance through the utilization of BindsNet. How You Will Benefit (I) Insights, and validations about the following topics: Chapter 1: Neuromorphic engineering Chapter 2: Artificial neuron Chapter 3: Bio-inspired computing Chapter 4: Steve Furber Chapter 5: Carver Mead Chapter 6: Recurrent neural network Chapter 7: Neural network Chapter 8: Wetware computer Chapter 9: Computational neurogenetic modeling Chapter 10: Spiking neural network Chapter 11: Neurorobotics Chapter 12: Misha Mahowald Chapter 13: Memristor Chapter 14: Physical neural network Chapter 15: NOMFET Chapter 16: Massimiliano Versace Chapter 17: Kwabena Boahen Chapter 18: SpiNNaker Chapter 19: Cognitive computer Chapter 20: Glossary of artificial intelligence Chapter 21: Hai Li (II) Answering the public top questions about neuromorphic engineering. (III) Real world examples for the usage of neuromorphic engineering in many fields. (IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of neuromorphic engineering' technologies. Who This Book Is For Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of neuromorphic engineering.




Neuromorphic Engineering


Book Description

The brain is not a glorified digital computer. It does not store information in registers, and it does not mathematically transform mental representations to establish perception or behavior. The brain cannot be downloaded to a computer to provide immortality, nor can it destroy the world by having its emerged consciousness traveling in cyberspace. However, studying the brain's core computation architecture can inspire scientists, computer architects, and algorithm designers to think fundamentally differently about their craft. Neuromorphic engineers have the ultimate goal of realizing machines with some aspects of cognitive intelligence. They aspire to design computing architectures that could surpass existing digital von Neumann-based computing architectures' performance. In that sense, brain research bears the promise of a new computing paradigm. As part of a complete cognitive hardware and software ecosystem, neuromorphic engineering opens new frontiers for neuro-robotics, artificial intelligence, and supercomputing applications. The book presents neuromorphic engineering from three perspectives: the scientist, the computer architect, and the algorithm designer. It zooms in and out of the different disciplines, allowing readers with diverse backgrounds to understand and appreciate the field. Overall, the book covers the basics of neuronal modeling, neuromorphic circuits, neural architectures, event-based communication, and the neural engineering framework.







Neuromorphic Engineering Systems and Applications


Book Description

Neuromorphic engineering has just reached its 25th year as a discipline. In the first two decades neuromorphic engineers focused on building models of sensors, such as silicon cochleas and retinas, and building blocks such as silicon neurons and synapses. These designs have honed our skills in implementing sensors and neural networks in VLSI using analog and mixed mode circuits. Over the last decade the address event representation has been used to interface devices and computers from different designers and even different groups. This facility has been essential for our ability to combine sensors, neural networks, and actuators into neuromorphic systems. More recently, several big projects have emerged to build very large scale neuromorphic systems. The Telluride Neuromorphic Engineering Workshop (since 1994) and the CapoCaccia Cognitive Neuromorphic Engineering Workshop (since 2009) have been instrumental not only in creating a strongly connected research community, but also in introducing different groups to each other’s hardware. Many neuromorphic systems are first created at one of these workshops. With this special research topic, we showcase the state-of-the-art in neuromorphic systems.




Event-Based Neuromorphic Systems


Book Description

Neuromorphic electronic engineering takes its inspiration from the functioning of nervous systems to build more power efficient electronic sensors and processors. Event-based neuromorphic systems are inspired by the brain's efficient data-driven communication design, which is key to its quick responses and remarkable capabilities. This cross-disciplinary text establishes how circuit building blocks are combined in architectures to construct complete systems. These include vision and auditory sensors as well as neuronal processing and learning circuits that implement models of nervous systems. Techniques for building multi-chip scalable systems are considered throughout the book, including methods for dealing with transistor mismatch, extensive discussions of communication and interfacing, and making systems that operate in the real world. The book also provides historical context that helps relate the architectures and circuits to each other and that guides readers to the extensive literature. Chapters are written by founding experts and have been extensively edited for overall coherence. This pioneering text is an indispensable resource for practicing neuromorphic electronic engineers, advanced electrical engineering and computer science students and researchers interested in neuromorphic systems. Key features: Summarises the latest design approaches, applications, and future challenges in the field of neuromorphic engineering. Presents examples of practical applications of neuromorphic design principles. Covers address-event communication, retinas, cochleas, locomotion, learning theory, neurons, synapses, floating gate circuits, hardware and software infrastructure, algorithms, and future challenges.




Springer Handbook of Computational Intelligence


Book Description

The Springer Handbook for Computational Intelligence is the first book covering the basics, the state-of-the-art and important applications of the dynamic and rapidly expanding discipline of computational intelligence. This comprehensive handbook makes readers familiar with a broad spectrum of approaches to solve various problems in science and technology. Possible approaches include, for example, those being inspired by biology, living organisms and animate systems. Content is organized in seven parts: foundations; fuzzy logic; rough sets; evolutionary computation; neural networks; swarm intelligence and hybrid computational intelligence systems. Each Part is supervised by its own Part Editor(s) so that high-quality content as well as completeness are assured.




Neuromorphic Devices for Brain-inspired Computing


Book Description

Explore the cutting-edge of neuromorphic technologies with applications in Artificial Intelligence In Neuromorphic Devices for Brain-Inspired Computing: Artificial Intelligence, Perception, and Robotics, a team of expert engineers delivers a comprehensive discussion of all aspects of neuromorphic electronics designed to assist researchers and professionals to understand and apply all manner of brain-inspired computing and perception technologies. The book covers both memristic and neuromorphic devices, including spintronic, multi-terminal, and neuromorphic perceptual applications. Summarizing recent progress made in five distinct configurations of brain-inspired computing, the authors explore this promising technology’s potential applications in two specific areas: neuromorphic computing systems and neuromorphic perceptual systems. The book also includes: A thorough introduction to two-terminal neuromorphic memristors, including memristive devices and resistive switching mechanisms Comprehensive explorations of spintronic neuromorphic devices and multi-terminal neuromorphic devices with cognitive behaviors Practical discussions of neuromorphic devices based on chalcogenide and organic materials In-depth examinations of neuromorphic computing and perceptual systems with emerging devices Perfect for materials scientists, biochemists, and electronics engineers, Neuromorphic Devices for Brain-Inspired Computing: Artificial Intelligence, Perception, and Robotics will also earn a place in the libraries of neurochemists, neurobiologists, and neurophysiologists.




Advances in Neuromorphic Hardware Exploiting Emerging Nanoscale Devices


Book Description

This book covers all major aspects of cutting-edge research in the field of neuromorphic hardware engineering involving emerging nanoscale devices. Special emphasis is given to leading works in hybrid low-power CMOS-Nanodevice design. The book offers readers a bidirectional (top-down and bottom-up) perspective on designing efficient bio-inspired hardware. At the nanodevice level, it focuses on various flavors of emerging resistive memory (RRAM) technology. At the algorithm level, it addresses optimized implementations of supervised and stochastic learning paradigms such as: spike-time-dependent plasticity (STDP), long-term potentiation (LTP), long-term depression (LTD), extreme learning machines (ELM) and early adoptions of restricted Boltzmann machines (RBM) to name a few. The contributions discuss system-level power/energy/parasitic trade-offs, and complex real-world applications. The book is suited for both advanced researchers and students interested in the field.