Neuromorphic Systems: Engineering Silicon From Neurobiology


Book Description

Neuromorphic systems are implementations in silicon of sensory and neural systems whose architecture and design are based on neurobiology. This growing area offers exciting possibilities, such as sensory systems that can compete with human senses and pattern recognition systems that can run in real time. It is at the intersection of neurophysiology, computer science and electrical engineering.This book brings together recent developments in Europe and the US, so that researchers in both academia and industry can find out about the state of the art. As well as elementary material on what neuromorphic systems are and why they are growing in importance, the book contains details of current work. There are articles on aspects of implementing sensory neuromorphic systems, and also on neuromorphic hardware.




Neuromorphic Systems Engineering


Book Description

Neuromorphic Systems Engineering: Neural Networks in Silicon emphasizes three important aspects of this exciting new research field. The term neuromorphic expresses relations to computational models found in biological neural systems, which are used as inspiration for building large electronic systems in silicon. By adequate engineering, these silicon systems are made useful to mankind. Neuromorphic Systems Engineering: Neural Networks in Silicon provides the reader with a snapshot of neuromorphic engineering today. It is organized into five parts viewing state-of-the-art developments within neuromorphic engineering from different perspectives. Neuromorphic Systems Engineering: Neural Networks in Silicon provides the first collection of neuromorphic systems descriptions with firm foundations in silicon. Topics presented include: large scale analog systems in silicon neuromorphic silicon auditory (ear) and vision (eye) systems in silicon learning and adaptation in silicon merging biology and technology micropower analog circuit design analog memory analog interchipcommunication on digital buses £/LIST£ Neuromorphic Systems Engineering: Neural Networks in Silicon serves as an excellent resource for scientists, researchers and engineers in this emerging field, and may also be used as a text for advanced courses on the subject.




Event-Based Neuromorphic Systems


Book Description

Neuromorphic electronic engineering takes its inspiration from the functioning of nervous systems to build more power efficient electronic sensors and processors. Event-based neuromorphic systems are inspired by the brain's efficient data-driven communication design, which is key to its quick responses and remarkable capabilities. This cross-disciplinary text establishes how circuit building blocks are combined in architectures to construct complete systems. These include vision and auditory sensors as well as neuronal processing and learning circuits that implement models of nervous systems. Techniques for building multi-chip scalable systems are considered throughout the book, including methods for dealing with transistor mismatch, extensive discussions of communication and interfacing, and making systems that operate in the real world. The book also provides historical context that helps relate the architectures and circuits to each other and that guides readers to the extensive literature. Chapters are written by founding experts and have been extensively edited for overall coherence. This pioneering text is an indispensable resource for practicing neuromorphic electronic engineers, advanced electrical engineering and computer science students and researchers interested in neuromorphic systems. Key features: Summarises the latest design approaches, applications, and future challenges in the field of neuromorphic engineering. Presents examples of practical applications of neuromorphic design principles. Covers address-event communication, retinas, cochleas, locomotion, learning theory, neurons, synapses, floating gate circuits, hardware and software infrastructure, algorithms, and future challenges.




Neuromorphic Engineering


Book Description

What Is Neuromorphic Engineering Neuromorphic computing and neuromorphic engineering are both terms that refer to the same thing: the use of very-large-scale integration (VLSI) systems that incorporate electrical analog circuits to simulate neuro-biological structures that are found in the nervous system. Any electronic device that does calculations with the help of artificial neurons that are implemented as physical structures is referred to as a neuromorphic computer or chip. Recently, the word "neuromorphic" has been used to refer to analog, digital, mixed-mode analog/digital VLSI, and software systems that embody models of brain systems. This use of the term has become more common. To actualize the implementation of neuromorphic computing on the hardware level, oxide-based memristors, spintronic memory, threshold switches, and transistors are some of the components that may be used. Training software-based neuromorphic systems of spiking neural networks can be accomplished through the use of error backpropagation, for instance through the utilization of Python-based frameworks like snnTorch, or through the utilization of canonical learning rules from the biological learning literature, for instance through the utilization of BindsNet. How You Will Benefit (I) Insights, and validations about the following topics: Chapter 1: Neuromorphic engineering Chapter 2: Artificial neuron Chapter 3: Bio-inspired computing Chapter 4: Steve Furber Chapter 5: Carver Mead Chapter 6: Recurrent neural network Chapter 7: Neural network Chapter 8: Wetware computer Chapter 9: Computational neurogenetic modeling Chapter 10: Spiking neural network Chapter 11: Neurorobotics Chapter 12: Misha Mahowald Chapter 13: Memristor Chapter 14: Physical neural network Chapter 15: NOMFET Chapter 16: Massimiliano Versace Chapter 17: Kwabena Boahen Chapter 18: SpiNNaker Chapter 19: Cognitive computer Chapter 20: Glossary of artificial intelligence Chapter 21: Hai Li (II) Answering the public top questions about neuromorphic engineering. (III) Real world examples for the usage of neuromorphic engineering in many fields. (IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of neuromorphic engineering' technologies. Who This Book Is For Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of neuromorphic engineering.




Neuromorphic Systems Engineering


Book Description

Neuromorphic Systems Engineering: Neural Networks in Silicon emphasizes three important aspects of this exciting new research field. The term neuromorphic expresses relations to computational models found in biological neural systems, which are used as inspiration for building large electronic systems in silicon. By adequate engineering, these silicon systems are made useful to mankind. Neuromorphic Systems Engineering: Neural Networks in Silicon provides the reader with a snapshot of neuromorphic engineering today. It is organized into five parts viewing state-of-the-art developments within neuromorphic engineering from different perspectives. Neuromorphic Systems Engineering: Neural Networks in Silicon provides the first collection of neuromorphic systems descriptions with firm foundations in silicon. Topics presented include: large scale analog systems in silicon neuromorphic silicon auditory (ear) and vision (eye) systems in silicon learning and adaptation in silicon merging biology and technology micropower analog circuit design analog memory analog interchipcommunication on digital buses £/LIST£ Neuromorphic Systems Engineering: Neural Networks in Silicon serves as an excellent resource for scientists, researchers and engineers in this emerging field, and may also be used as a text for advanced courses on the subject.




Handbook of Nature-Inspired and Innovative Computing


Book Description

As computing devices proliferate, demand increases for an understanding of emerging computing paradigms and models based on natural phenomena. Neural networks, evolution-based models, quantum computing, and DNA-based computing and simulations are all a necessary part of modern computing analysis and systems development. Vast literature exists on these new paradigms and their implications for a wide array of applications. This comprehensive handbook, the first of its kind to address the connection between nature-inspired and traditional computational paradigms, is a repository of case studies dealing with different problems in computing and solutions to these problems based on nature-inspired paradigms. The "Handbook of Nature-Inspired and Innovative Computing: Integrating Classical Models with Emerging Technologies" is an essential compilation of models, methods, and algorithms for researchers, professionals, and advanced-level students working in all areas of computer science, IT, biocomputing, and network engineering.




Advances in Neuromorphic Memristor Science and Applications


Book Description

Physical implementation of the memristor at industrial scale sparked the interest from various disciplines, ranging from physics, nanotechnology, electrical engineering, neuroscience, to intelligent robotics. As any promising new technology, it has raised hopes and questions; it is an extremely challenging task to live up to the high expectations and to devise revolutionary and feasible future applications for memristive devices. The possibility of gathering prominent scientists in the heart of the Silicon Valley given by the 2011 International Joint Conference on Neural Networks held in San Jose, CA, has offered us the unique opportunity of organizing a series of special events on the present status and future perspectives in neuromorphic memristor science. This book presents a selection of the remarkable contributions given by the leaders of the field and it may serve as inspiration and future reference to all researchers that want to explore the extraordinary possibilities given by this revolutionary concept.




Neuromorphic Engineering Systems and Applications


Book Description

Neuromorphic engineering has just reached its 25th year as a discipline. In the first two decades neuromorphic engineers focused on building models of sensors, such as silicon cochleas and retinas, and building blocks such as silicon neurons and synapses. These designs have honed our skills in implementing sensors and neural networks in VLSI using analog and mixed mode circuits. Over the last decade the address event representation has been used to interface devices and computers from different designers and even different groups. This facility has been essential for our ability to combine sensors, neural networks, and actuators into neuromorphic systems. More recently, several big projects have emerged to build very large scale neuromorphic systems. The Telluride Neuromorphic Engineering Workshop (since 1994) and the CapoCaccia Cognitive Neuromorphic Engineering Workshop (since 2009) have been instrumental not only in creating a strongly connected research community, but also in introducing different groups to each other’s hardware. Many neuromorphic systems are first created at one of these workshops. With this special research topic, we showcase the state-of-the-art in neuromorphic systems.




Brain Inspired Cognitive Systems 2008


Book Description

Brain Inspired Cognitive Systems 2008 (June 24-27, 2008; São Luís, Brazil) brought together leading scientists and engineers who use analytic, syntactic and computational methods both to understand the prodigious processing properties of biological systems and, specifically, of the brain, and to exploit such knowledge to advance computational methods towards ever higher levels of cognitive competence. This book includes the papers presented at four major symposia: Part I - Cognitive Neuroscience Part II - Biologically Inspired Systems Part III - Neural Computation Part IV - Models of Consciousness.




Biohybrid Systems


Book Description

The discipline of neurodesign is a highly interdisciplinary one, while at the same time in the process of maturing towards real-life applications. The breakthrough about to be achieved is to close the loop in communication between neural systems and electronic and mechatronic systems and actually let the nervous system adapt to the feedback from the man-made systems. To master this loop, scientists need a sound understanding of neurology, from the cellular to the systems scale, of man-made systems and how to connect the two. These scientists comprise medical scientists, neurologists and physiologists, engineers, as well as biophysicists. And they need the topics in a coherently written work with chapters building upon another.