Neuronal Networks in Brain Function, CNS Disorders, and Therapeutics


Book Description

Neuronal Networks in Brain Function, CNS Disorders, and Therapeutics, edited by two leaders in the field, offers a current and complete review of what we know about neural networks. How the brain accomplishes many of its more complex tasks can only be understood via study of neuronal network control and network interactions. Large networks can undergo major functional changes, resulting in substantially different brain function and affecting everything from learning to the potential for epilepsy. With chapters authored by experts in each topic, this book advances the understanding of: - How the brain carries out important tasks via networks - How these networks interact in normal brain function - Major mechanisms that control network function - The interaction of the normal networks to produce more complex behaviors - How brain disorders can result from abnormal interactions - How therapy of disorders can be advanced through this network approach This book will benefit neuroscience researchers and graduate students with an interest in networks, as well as clinicians in neuroscience, pharmacology, and psychiatry dealing with neurobiological disorders. - Utilizes perspectives and tools from various neuroscience subdisciplines (cellular, systems, physiologic), making the volume broadly relevant - Chapters explore normal network function and control mechanisms, with an eye to improving therapies for brain disorders - Reflects predominant disciplinary shift from an anatomical to a functional perspective of the brain - Edited work with chapters authored by leaders in the field around the globe – the broadest, most expert coverage available




Conn's Translational Neuroscience


Book Description

Conn's Translational Neuroscience provides a comprehensive overview reflecting the depth and breadth of the field of translational neuroscience, with input from a distinguished panel of basic and clinical investigators. Progress has continued in understanding the brain at the molecular, anatomic, and physiological levels in the years following the 'Decade of the Brain,' with the results providing insight into the underlying basis of many neurological disease processes. This book alternates scientific and clinical chapters that explain the basic science underlying neurological processes and then relates that science to the understanding of neurological disorders and their treatment. Chapters cover disorders of the spinal cord, neuronal migration, the autonomic nervous system, the limbic system, ocular motility, and the basal ganglia, as well as demyelinating disorders, stroke, dementia and abnormalities of cognition, congenital chromosomal and genetic abnormalities, Parkinson's disease, nerve trauma, peripheral neuropathy, aphasias, sleep disorders, and myasthenia gravis. In addition to concise summaries of the most recent biochemical, physiological, anatomical, and behavioral advances, the chapters summarize current findings on neuronal gene expression and protein synthesis at the molecular level. Authoritative and comprehensive, Conn's Translational Neuroscience provides a fully up-to-date and readily accessible guide to brain functions at the cellular and molecular level, as well as a clear demonstration of their emerging diagnostic and therapeutic importance. - Provides a fully up-to-date and readily accessible guide to brain functions at the cellular and molecular level, while also clearly demonstrating their emerging diagnostic and therapeutic importance - Features contributions from leading global basic and clinical investigators in the field - Provides a great resource for researchers and practitioners interested in the basic science underlying neurological processes - Relates and translates the current science to the understanding of neurological disorders and their treatment




Translational Research in Traumatic Brain Injury


Book Description

Traumatic brain injury (TBI) remains a significant source of death and permanent disability, contributing to nearly one-third of all injury related deaths in the United States and exacting a profound personal and economic toll. Despite the increased resources that have recently been brought to bear to improve our understanding of TBI, the developme




Glutamate-Related Biomarkers in Drug Development for Disorders of the Nervous System


Book Description

Glutamate is the most pervasive neurotransmitter in the central nervous system (CNS). Despite this fact, no validated biological markers, or biomarkers, currently exist for measuring glutamate pathology in CNS disorders or injuries. Glutamate dysfunction has been associated with an extensive range of nervous system diseases and disorders. Problems with how the neurotransmitter glutamate functions in the brain have been linked to a wide variety of disorders, including schizophrenia, Alzheimer's, substance abuse, and traumatic brain injury. These conditions are widespread, affecting a large portion of the United States population, and remain difficult to treat. Efforts to understand, treat, and prevent glutamate-related disorders can be aided by the identification of valid biomarkers. The Institute of Medicine's Forum on Neuroscience and Nervous System Disorders held a workshop on June 21-22, 2010, to explore ways to accelerate the development, validation, and implementation of such biomarkers. Glutamate-Related Biomarkers in Drug Development for Disorders of the Nervous System: Workshop Summary investigates promising current and emerging technologies, and outlines strategies to procure resources and tools to advance drug development for associated nervous system disorders. Moreover, this report highlights presentations by expert panelists, and the open panel discussions that occurred during the workshop.




Sigma Receptors: Their Role in Disease and as Therapeutic Targets


Book Description

Originally confused with opioid receptors and then orphan receptors with no biological function, Sigma Receptors are now recognized as relevant to many degenerative diseases with remarkable potential as therapeutic targets. In this text, new information about the structure of sigma 1 receptor, its binding sites are provided as well as its expression in many cell types. It’s putative role in degenerative neuronal diseases including amyotrophic lateral sclerosis, Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, pain, drug addiction and locomotor activity. Their roles in possible treatments for blinding retinal diseases emphasize the tremendous far-reaching potential for ligands for these receptors. Exciting breakthroughs in this dynamic field in the last decade are reported herein, which will guide future investigators in determining the full potential of this unique, yet abundantly expressed protein.




Functional Neurologic Disorders


Book Description

Functional Neurologic Disorders, the latest volume in the Handbook of Clinical Neurology series, summarizes state-of-the-art research findings and clinical practice on this class of disorders at the interface between neurology and psychiatry. This 51-chapter volume offers an historical introduction, chapters on epidemiology and pathophysiolology, a large section on the clinical features of different type of functional neurologic symptoms and disorders (including functional movement disorders, non-epileptic seizures, dizziness, vision, hearing, speech and cognitive symptoms), and then concluding with approaches to therapy. This group of internationally acclaimed experts in neurology, psychiatry, and neuroscience represent a broad spectrum of areas of expertise, chosen for their ability to write clearly and concisely with an eye toward a clinical audience. This HCN volume sets a new landmark standard for a comprehensive, multi-authored work dealing with functional neurologic disorders (also described as psychogenic, dissociative or conversion disorders). - Offers a comprehensive interdisciplinary approach for the care of patients with functional disorders seen in neurologic practice, leading to more efficient prevention, management, and treatment - Provides a synthesis of research efforts incorporating clinical, brain imaging and neurophysiological studies - Fills an existing gap between traditional neurology and traditional psychiatry - Contents include coverage of history, epidemiology, clinical presentations, and therapy - Edited work with chapters authored by leaders in the field, the broadest, most expert coverage available




Neuroimaging of Pain


Book Description

Authored by world renowned scientists, this book expertly reviews all the imaging techniques and exciting new methods for the analysis of the pain, including novel tracers, biomarker, metabolomic and gene-array profiling, together with cellular, genetic, and molecular approaches. Recent advances in human brain imaging techniques have allowed a better understand of the functional connectivity in pain pathways, as well as the functional and anatomical alterations that occur in chronic pain patients. Modern imaging techniques have permitted rapid progress in the understanding of networks in the brain related to pain processing and those related to different types of pain modulation. Neuroimaging of Pain is designed to be a valuable resource for radiologists, neuroradiologists, neurologists and neuroscientists, working in hospitals and universities from junior trainees to consultants.




Seizures and Epilepsy


Book Description

This second edition of 'Seizures and Epilepsy' is completely revised, due to tremendous advances in the understanding of the fundamental neuronal mechanisms underlying epileptic phenomena, as well as current diagnosis and treatment, which have been heavily influenced over the past several decades by seminal neuroscientific developments, particularly the introduction of molecular neurobiology, genetics, and modern neuroimaging. This resource covers a broad range of both basic and clinical epileptology.




Enteric Glia


Book Description

The enteric nervous system (ENS) is a complex neural network embedded in the gut wall that orchestrates the reflex behaviors of the intestine. The ENS is often referred to as the “little brain” in the gut because the ENS is more similar in size, complexity and autonomy to the central nervous system (CNS) than other components of the autonomic nervous system. Like the brain, the ENS is composed of neurons that are surrounded by glial cells. Enteric glia are a unique type of peripheral glia that are similar to astrocytes of the CNS. Yet enteric glial cells also differ from astrocytes in many important ways. The roles of enteric glial cell populations in the gut are beginning to come to light and recent evidence implicates enteric glia in almost every aspect of gastrointestinal physiology and pathophysiology. However, elucidating the exact mechanisms by which enteric glia influence gastrointestinal physiology and identifying how those roles are altered during gastrointestinal pathophysiology remain areas of intense research. The purpose of this e-book is to provide an introduction to enteric glial cells and to act as a resource for ongoing studies on this fascinating population of glia. Table of Contents: Introduction / A Historical Perspective on Enteric Glia / Enteric Glia: The Astroglia of the Gut / Molecular Composition of Enteric Glia / Development of Enteric Glia / Functional Roles of Enteric Glia / Enteric Glia and Disease Processes in the Gut / Concluding Remarks / References / Author Biography




Brain Repair After Stroke


Book Description

Increasing evidence identifies the possibility of restoring function to the damaged brain via exogenous therapies. One major target for these advances is stroke, where most patients can be left with significant disability. Treatments have the potential to improve the victim's quality of life significantly and reduce the time and expense of rehabilitation. Brain Repair After Stroke reviews the biology of spontaneous brain repair after stroke in animal models and in humans. Detailed chapters cover the many forms of therapy being explored to promote brain repair and consider clinical trial issues in this context. This book provides a summary of the neurobiology of innate and treatment-induced repair mechanisms after hypoxia and reviews the state of the art for human therapeutics in relation to promoting behavioral recovery after stroke. Essential reading for stroke physicians, neurologists, rehabilitation physicians and neuropsychologists.