Neuropeptide GPCRs in neuroendocrinology


Book Description

The human genome encompasses ˜ 860 G protein-coupled receptors (GPCRs) including 374 non-chemosensory GPCRs. Half of these latter GPCRs recognize (neuro)peptides as natural ligands. GPCRs thus play a pivotal role in neuroendocrine communication. In particular, GPCRs are involved in the neuroendocrine control of feeding behavior, reproduction, growth, hydromineral homeostasis and stress response. GPCRs are also major drug targets and hence possess a strong potential for the development of innovative pharmaceuticals. The aim of this Research Topic was to assemble a series of review articles and original research papers on neuropeptide GPCRs and their ligands that would illustrate the different facets of the studies currently conducted in this domain.




Clinical Neuroendocrinology: Neuropeptide Gpcrs


Book Description

The branch of biology which focuses on the relationship between the endocrine and the nervous system is termed as neuroendocrinology. The regulation of the activity of the hormones by the brain is studied within this field. The physiological processes in the body are regulated by a process known as neuroendocrine integration, wherein the endocrine and nervous system function together. The major neuroendocrine systems in the body are Hypothalamic-pituitary-adrenal axis (HPA axis), Hypothalamic-pituitary-thyroid axis (HPT axis), Hypothalamic-pituitary-gonadal axis (HPG axis) and Hypothalamic-neurohypophyseal system. GPCRs are G protein-coupled receptors, which can bind to numerous neuropeptides. This book is a compilation of chapters that discuss the most vital concepts and emerging trends in the field of neuroendocrinology. It presents the complex subject of neuropeptide GPCRs in the most comprehensible and easy to understand language. The extensive content of this book provides the readers with a thorough understanding of the subject.




Orphan G Protein-Coupled Receptors and Novel Neuropeptides


Book Description

Over the last decade it has been shown that orphan G protein-coupled receptors (GPCRs) can be used as targets to discover novel neuropeptides. A dozen neuropeptides have been identified through this approach. Each of these neuropeptides has opened new doors for our understanding of fundamental physiological or behavioral responses. For example the orexins, MCH and ghrelin carry fundamental roles in regulating food intake while neuropeptide S, neuromedin S, the prokineticins and the orexins are major players in modulating sleep and circadian rhythms. The chapters of this book review the latest research in the field, most of them are written by the original discoverers of the respective novel neuropeptide. Emphasis is set not only on their discovery but also on their functional significance. Since many of these neuropeptides are part of drug discovery programs, this book impacts academic as well as pharmaceutical research.




Neuroendocrinology: Recent Studies in Neuropeptide Gpcrs


Book Description

Neuroendocrinology is the branch of physiology which deals with the study of interactions between the endocrine system and the nervous system. It encompasses the way brain regulates the hormonal activity in the body. To regulate the physiological processes of the human body, the endocrine and nervous systems often act together and the process is known as neuroendocrine integration. Neuroendocrine system is a system by which hypothalamus maintains homeostasis by regulating metabolism, energy utilization, eating and drinking behavior, reproduction, blood pressure and osmolarity. G protein-coupled receptors (GPCRs) are the neuropeptide targets via which the intracellular signaling transduction pathways are activated. This book is a valuable compilation of topics, ranging from the basic to the most complex advancements in the field of neuroendocrinology. It is an upcoming field of science that has undergone rapid development over the past few decades. This book is a resource guide for experts as well as students.




Orphan G Protein-Coupled Receptors and Novel Neuropeptides


Book Description

Over the last decade it has been shown that orphan G protein-coupled receptors (GPCRs) can be used as targets to discover novel neuropeptides. A dozen neuropeptides have been identified through this approach. Each of these neuropeptides has opened new doors for our understanding of fundamental physiological or behavioral responses. For example the orexins, MCH and ghrelin carry fundamental roles in regulating food intake while neuropeptide S, neuromedin S, the prokineticins and the orexins are major players in modulating sleep and circadian rhythms. The chapters of this book review the latest research in the field, most of them are written by the original discoverers of the respective novel neuropeptide. Emphasis is set not only on their discovery but also on their functional significance. Since many of these neuropeptides are part of drug discovery programs, this book impacts academic as well as pharmaceutical research.




Molecular Neuroendocrinology


Book Description

Molecular Neuroendocrinology: From Genome to Physiology, provides researchers and students with a critical examination of the steps being taken to decipher genome complexity in the context of the expression, regulation and physiological functions of genes in neuroendocrine systems. The 19 chapters are divided into four sectors: A) describes and explores the genome, its evolution, expression and the mechanisms that contribute to protein, and hence biological, diversity. B) discusses the mechanisms that enhance peptide and protein diversity beyond what is encoded in the genome through post-translational modification. C) considers the molecular tools that today’s neuroendocrinologists can use to study the regulation and function of neuroendocrine genes within the context of the intact organism. D) presents a range of case studies that exemplify the state-of-the-art application of genomic technologies in physiological and behavioural experiments that seek to better understand complex biological processes. • Written by a team of internationally renowned researchers • Both print and enhanced e-book versions are available • Illustrated in full colour throughout This is the third volume in a new Series ‘Masterclass in Neuroendocrinology’ , a co- publication between Wiley and the INF (International Neuroendocrine Federation) that aims to illustrate highest standards and encourage the use of the latest technologies in basic and clinical research and hopes to provide inspiration for further exploration into the exciting field of neuroendocrinology. Series Editors: John A. Russell, University of Edinburgh, UK and William E. Armstrong, The University of Tennessee, USA




Advances in Invertebrate (Neuro)Endocrinology (2-volume set)


Book Description

Advances in Invertebrate (Neuro)Endocrinology: A Collection of Reviews in the Post-Genomic Era (2-volume set) provides an informative series of reviews from expert scientists who are at the forefront of their research into the endocrinology of invertebrates. These two volumes are timely and appropriate in this post-genomic era because of the rapid pace of change brought about by genome projects, functional genomics, and genetics (omics technologies). The volume shows the rich history and strong tradition of cutting-edge research using invertebrates that has opened up our broader understanding of comparative endocrinology and the evolution of regulatory pathways and systems. These reviews set the scene and context for this exciting new era of understanding that has come from this post-genomic revolution. This book undertakes the daunting task of covering most of the diverse endocrine systems that exist among invertebrates. The papers in this book will advance our knowledge of invertebrate endocrinology but also of endocrinology in general, making the book will be valuable to researchers and students.




An Introduction to Neuroendocrinology


Book Description

This book is designed as an introductory text in neuroendocrinology; the study of the interaction between the brain and endocrine system and the influence of this on behaviour. The endocrine glands, pituitary gland and hypothalamus and their interactions and hormones are discussed. The action of steroid and thyroid hormone receptors and the regulation of target cell response to hormones is examined. The function of neuropeptides is discussed with respect to the neuroendocrine system and behaviour. The neuroimmune system and lymphokines are described and the interaction between the neuroendocrine and neuroimmune systems discussed. Finally, methods for studying hormonal influences on behaviour are outlined. Each chapter has review and essay questions designed for advanced students and honours or graduate students with a background in neuroscience, respectively.




Molecular Neuroendocrinology


Book Description

Molecular Neuroendocrinology: From Genome to Physiology, provides researchers and students with a critical examination of the steps being taken to decipher genome complexity in the context of the expression, regulation and physiological functions of genes in neuroendocrine systems. The 19 chapters are divided into four sectors: A) describes and explores the genome, its evolution, expression and the mechanisms that contribute to protein, and hence biological, diversity. B) discusses the mechanisms that enhance peptide and protein diversity beyond what is encoded in the genome through post-translational modification. C) considers the molecular tools that today’s neuroendocrinologists can use to study the regulation and function of neuroendocrine genes within the context of the intact organism. D) presents a range of case studies that exemplify the state-of-the-art application of genomic technologies in physiological and behavioural experiments that seek to better understand complex biological processes. • Written by a team of internationally renowned researchers • Both print and enhanced e-book versions are available • Illustrated in full colour throughout This is the third volume in a new Series ‘Masterclass in Neuroendocrinology’ , a co- publication between Wiley and the INF (International Neuroendocrine Federation) that aims to illustrate highest standards and encourage the use of the latest technologies in basic and clinical research and hopes to provide inspiration for further exploration into the exciting field of neuroendocrinology. Series Editors: John A. Russell, University of Edinburgh, UK and William E. Armstrong, The University of Tennessee, USA