Neuroprotection in the Hibernating Brain


Book Description

"Hibernation, a natural model of tolerance to 'cerebral ischemia', represents a state of pronounced fluctuation in cerebral blood flow where no brain damage occurs. This study systematically investigates the brain tissue response of hibernating and euthermic arctic ground squirrels to CNS trauma, modeled by insertion of microdialysis probes. The effect of glutamate, an excitatory amino acid neurotransmitter, on the cellular response and the origin of the significant amount of gltuamate were determined by quantitative microdialysis study. The present results indicate in euthermic brain tissue a typical inflammatory tissue response evidenced by the presence of activated microglia and astrocytes and the oxidative stress response. However, this response was profoundly suppressed in hibernating animals. Importantly, the progressive increase in [glu]dia is not necessarily associated with the enhanced tissue response observed in euthermic animals and could be avoided by using sterile microdialysis technique, which suggests a microbial origin of glutamate"--Leaf iii.




Neuroprotection in Hippocampal Slices from the Hibernating Species Arctic Ground Squirrel, Spermophilus Parryii


Book Description

"Stroke is the third leading cause of death in the U.S. and the leading cause of adult onset disability worldwide. Despite tremendous efforts to find therapeutics, only one currently approved treatment for stroke exists which is indicated for use in less than 5% of stroke victims. During a stroke, the brain experiences oxygen and nutrient deprivation due to lack of blood flow (i.e., ischemia) and tissue destruction ensues. Hibernating Arctic ground squirrels (AGS), Spermophilus parryii, are able to survive profound decreases in blood flow and cerebral perfusion during torpor, and return of blood flow (i.e., reperfusion) during intermittent euthermic periods without neurological damage. Hibernating species are a natural model of tolerance to insults, such as ischemia, that would be injurious to non-hibernating species, and are a novel model for investigating much needed therapeutics for pathologies such as stroke. Tolerance to traumatic brain injury demonstrated in hibernating AGS in vivo could be due to tissue properties, circulating factors or hypothermia. To investigate mechanisms of tolerance in brain of hibernating animals, the current project established a chronic culture system for hippocampal slices from AGS at 37°C. By using this in vitro approach, tissue properties of AGS brain could be assessed without effects of circulating factors or the protective nature of hypothermia. This project determined whether an intrinsic tissue tolerance to oxygen and nutrient deprivation, an in vitro model of ischemia-reperfusion, persists in chronic AGS slice culture and addressed associated mechanisms. Here, for the first time, slices from hibernating AGS were shown to possess a persistent tolerance to oxygen and nutrient deprivation. Thus, intrinsic tissue properties in hippocampus of hibernating AGS confer tolerance to oxygen and nutrient deprivation in addition to hypothermia. Evidence in the literature supports that neuroprotective factors are present in serum and tissue of hibernating animals, and here a preliminary investigation suggests that factors in AGS serum may play a role in protection in brain of hibernating AGS. Finally, a model is proposed that incorporates these findings, which suggests that mimicking properties of tissue and serum from hibernating animals in non-hibernating species may yield success in developing efficacious stroke therapeutics"--Leaves iii-iv.




Endogenous Neuroprotection


Book Description

Endogenous neuoprotection is a phenomenon where a brief episode of ischemia renders the brain resistant against a subsequent longer-asting ischemia event. Experimentally, the author was able to model hypoxic preconditioning in animal model. Increasing knowledge of this endogenous neuroprotectin by ischemic tolerance may help to minimize neuronal damage following ischemic stroke and hypoxic encephalopathy. This book is, therefore, the first overview of this important topic and will certainly influence further investigations in clinical and neuroscience research.




Stroke Therapy


Book Description

This new edition keeps you up to date with the exciting new developments in treating cerebrovascular disorders. Comprehensive and practical, it surveys methods for accurate stroke diagnosis necessary for you to make appropriate therapeutic decisions.




Neurobiology of Brain Disorders


Book Description

Neurobiology of Brain Disorders: Biological Basis of Neurological and Psychiatric Disorders, Second Edition provides basic scientists a comprehensive overview of neurological and neuropsychiatric disease. This book links basic, translational, and clinical research, covering the genetic, developmental, molecular and cellular mechanisms underlying all major categories of brain disorders. It offers students, postdoctoral fellows, and researchers in diverse fields of neuroscience, neurobiology, neurology, and psychiatry the tools they need to obtain a basic background in the major neurological and psychiatric diseases. Topics include developmental, autoimmune, central, and peripheral neurodegeneration, infectious diseases, and diseases of higher function. Organized by individual disorder, each chapter includes coverage of the clinical condition, diagnosis, treatment, underlying mechanisms, relevant basic and translational research, and key unanswered questions. This volume reflects progress in the field since publication of the first edition, with fully updated chapters, and new chapters on isolation, aging, global diseases, vascular diseases, and toxic/metabolic disease. New disorder coverage includes fibromyalgia, chronic fatigue, Restless Legs Syndrome, myasthenia gravis, and more. Links basic, translational and clinical research on disorders of the nervous system Covers a vast array of neurological and psychiatric disorders, including Down syndrome, autism, muscular dystrophy, diabetes, TBI, Parkinson's, Huntington's, Alzheimer's, OCD, PTSD, schizophrenia, depression and pain Features new chapters on the effects of aging and isolation on brain health Expands coverage on disorders, including new chapters on fibromyalgia, chronic fatigue, and restless legs syndrome Features in-text summary points, special feature boxes and research questions




Current Progress in the Understanding of Secondary Brain Damage from Trauma and Ischemia


Book Description

Information is provided from the basic and clinical sciences on the mechanisms damaging the brain from trauma or ischemia. New aspects involve the endoplasmic reticulum, mitochondrial failure, pathobiology of axonal injury, molecular signals activating glial elements, or the emerging therapeutical role of neurotrophins. Experimental issues involve a better analysis of the ischemic penumbra, the salvagable tissue. Therapeutic contributions reach from the environmental influence to gene expression, including neuroprotection, such as hibernation – mother nature’s experiment – or hypothermia which is reported to induce cell swelling. Treatment issues deal also with thrombolysis and combination therapies, or with the clearance of adverse blood components – LDL/fibrinogen – by a novel procedure using heparin. Other highlights are discussing the specificities of pediatric vs. adult brain trauma, or the evolving role of the Apolipoprotein-E e4 gene in severe head injury. An update is also provided on an online assessment of the patient management during the pre- and early hospital phase in Southern Bavaria. The empirical observation of neuroworsening is analyzed in further details, whether this is a specificity autonomously driving the posttraumatic course. Finally, the unsolved question why drug trials in severe head injury have failed so far in view of the promising evidence from the laboratory is subjected to an expert analysis.




Innate Tolerance in the CNS


Book Description

Cerebral preconditioning is a phenomenon wherein a mild insult or stress induces cellular and tissue adaptation or tolerance to a later, severe injury, therefore reflecting the efficacy of endogenous mechanisms of cerebrovascular protection. Initially identified for rapid cardiac protection, preconditioning has expanded to all aspects of CNS protection from ischemia, trauma and potentially neurodegeneration. Many different stimuli or stressors have been identified as preconditioning agents, suggesting a downstream convergence of mechanisms and underscoring the potential for translational application of preconditioning in the clinic. Moreover, the fundamental mechanisms responsible for preconditioning-induced tolerance will help in the design novel pharmacological approaches for neuroprotection. While stroke and many other brain injuries are not predictable, in some populations (e.g., metabolic syndrome, patients undergoing carotid endarterectomy, aneurysm clipping, or with recent TIAs) the risk for stroke is identifiable and significant, and preconditioning may represent a useful strategy for neuroprotection. For unpredictable injuries, post-conditioning the brain – or inducing endogenous protective mechanisms after the initial injury – can also abrogate the extent of injury. Finally, remote pre- and post-conditioning methods have been developed in animals, and are now being tested in clinical trials, wherein a brief, noninjurious stress to a noncerebral tissue (i.e., skeletal muscle) can provide protection to the CNS and thereby allows clinicians the opportunity to circumvent concerns regarding the direct preconditioning of neurological tissues.




Winter World


Book Description

From flying squirrels to grizzly bears, and from torpid turtles to insects with antifreeze, the animal kingdom relies on some staggering evolutionary innovations to survive winter. Unlike their human counterparts, who must alter the environment to accommodate physical limitations, animals are adaptable to an amazing range of conditions. Examining everything from food sources in the extremely barren winter land-scape to the chemical composition that allows certain creatures to survive, Heinrich's Winter World awakens the largely undiscovered mysteries by which nature sustains herself through winter's harsh, cruel exigencies.




The Handbook of Neuroprotection


Book Description

Neuroprotection has been placed on a firm scientific basis during the past decade due to an improved understanding of the molecular basis of neurological diseases and the knowledge that treatment of neurological disorders should not be merely symptomatic but preventative against the progression of the underlying disease, as well as regenerative. The Handbook of Neuroprotection serves as a comprehensive review of neuroprotection based on knowledge of the molecular basis of neurological disorders. Neuroprotective effects of older, established drugs, as well as new drugs in development, are well documented in this detailed volume, featuring the most cutting-edge and innovative methods currently in use. In-depth and authoritative, The Handbook of Neuroprotection features a compendium of vital knowledge aimed at providing researchers with an essential reference for this key neurological area of study.