Neutrino Interactions with Electrons and Protons


Book Description

Market: Researchers and graduate students in high energy physics, physics historians. This book contains 13 papers that reflect the development of neutrino interactions with the electrons and protons in a fixed-target experiment that, beginning in 1980, grew out of the formal collaboration in high energy physics between Japanese and American institutions. These experiments were crucial to the merger of quantum electrodynamics and quantum weak dynamics, the foundation of electroweak theory today.




Experimental Techniques in Nuclear and Particle Physics


Book Description

I have been teaching courses on experimental techniques in nuclear and particle physics to master students in physics and in engineering for many years. This book grew out of the lecture notes I made for these students. The physics and engineering students have rather different expectations of what such a course should be like. I hope that I have nevertheless managed to write a book that can satisfy the needs of these different target audiences. The lectures themselves, of course, need to be adapted to the needs of each group of students. An engineering student will not qu- tion a statement like “the velocity of the electrons in atoms is ?1% of the velocity of light”, a physics student will. Regarding units, I have written factors h and c explicitly in all equations throughout the book. For physics students it would be preferable to use the convention that is common in physics and omit these constants in the equations, but that would probably be confusing for the engineering students. Physics students tend to be more interested in theoretical physics courses. However, physics is an experimental science and physics students should und- stand how experiments work, and be able to make experiments work. This is an open access book.




Particle Physics Reference Library


Book Description

This second open access volume of the handbook series deals with detectors, large experimental facilities and data handling, both for accelerator and non-accelerator based experiments. It also covers applications in medicine and life sciences. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access




The Physics of Neutrino Interactions


Book Description

A comprehensive introduction to neutrino physics with detailed description of neutrinos and their properties.




Handbook of Particle Detection and Imaging


Book Description

The handbook centers on detection techniques in the field of particle physics, medical imaging and related subjects. It is structured into three parts. The first one is dealing with basic ideas of particle detectors, followed by applications of these devices in high energy physics and other fields. In the last part the large field of medical imaging using similar detection techniques is described. The different chapters of the book are written by world experts in their field. Clear instructions on the detection techniques and principles in terms of relevant operation parameters for scientists and graduate students are given.Detailed tables and diagrams will make this a very useful handbook for the application of these techniques in many different fields like physics, medicine, biology and other areas of natural science.




Particle Physics: a Very Short Introduction


Book Description

Following the discovery of the Higgs boson, Frank Close has produced this major revision to his classic and compelling introduction to the fundamental particles that make up the universe.




Leptons and Quarks


Book Description




Exploring Electron–Neutrino–Argon Interactions


Book Description

This thesis explores the electron-neutrino and antineutrino cross section on argon using the MicroBooNE liquid argon time projection chamber detector. With only a handful of electron neutrino cross section measurements in the hundred MeV to GeV range to date and only one of them on argon as the target nucleus: the result from the ArgoNeuT experiment, there is a need for new, large statistics, electron-neutrino cross section measurements. The precise knowledge of the electron neutrino cross section is fundamental for tests of lepton universality, making meaningful interpretations of neutrino oscillations and beyond the Standard Model search experiments involving electron neutrinos. Moreover, the appearance of electron neutrinos in a beam of predominantly muon neutrinos is the key signature in searches for sterile neutrinos in short-baseline experiments and measurements of Charge-Parity violation in long-baseline oscillation experiments. The measurements in this thesis utilize the NuMI neutrino beamline which is highly off-axis to the MicroBooNE detector but provides a rich source of electron-neutrinos. Critical to the measurement of the cross section is a detailed understanding of the flux of neutrinos at MicroBooNE and the uncertainties associated with it. The neutrino flux prediction tools used for the on-axis NuMI experiments are described and studied in detail for their implementation in the case of MicroBooNE. These tools will form the foundation for many future measurements using the NuMI beam at MicroBooNE. With the use of argon as a target for studying neutrino interactions, the large size of the nucleus introduces nuclear effects which impact the kinematics and multiplicities of the particles produced in the initial interaction. Such effects are complicated to model and are currently an active area of research with various models and neutrino generators available. The measurements in this thesis compare the electron-neutrino argon cross section to several neutrino generators with differing physics models. These comparisons provide important information in the modelling of neutrino interactions with nuclei such as argon. The target audience for this thesis is aimed at particle physics graduate students, particularly in the field of neutrino physics working with noble element time-projection chambers.




University Physics


Book Description

University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result. The text and images in this textbook are grayscale.




The Physics of Neutrinos


Book Description

The physics of neutrinos--uncharged elementary particles that are key to helping us better understand the nature of our universe--is one of the most exciting frontiers of modern science. This book provides a comprehensive overview of neutrino physics today and explores promising new avenues of inquiry that could lead to future breakthroughs. The Physics of Neutrinos begins with a concise history of the field and a tutorial on the fundamental properties of neutrinos, and goes on to discuss how the three neutrino types interchange identities as they propagate from their sources to detectors. The book shows how studies of neutrinos produced by such phenomena as cosmic rays in the atmosphere and nuclear reactions in the solar interior provide striking evidence that neutrinos have mass, and it traces our astounding progress in deciphering the baffling experimental findings involving neutrinos. The discovery of neutrino mass offers the first indication of a new kind of physics that goes beyond the Standard Model of elementary particles, and this book considers the unanticipated patterns in the masses and mixings of neutrinos in the framework of proposed new theoretical models. The Physics of Neutrinos maps out the ambitious future facilities and experiments that will advance our knowledge of neutrinos, and explains why the way forward in solving the outstanding questions in neutrino science will require the collective efforts of particle physics, nuclear physics, astrophysics, and cosmology.