Ionizing Radiation Effects In Mos Oxides


Book Description

This volume is intended to serve as an updated critical guide to the extensive literature on the basic physical mechanisms controlling the radiation and reliability responses of MOS oxides. The last such guide was Ionizing Radiation Effects in MOS Devices and Circuits, edited by Ma and Dressendorfer and published in 1989. While that book remains an authoritative reference in many areas, there has been a significant amount of more recent work on the nature of the electrically active defects in MOS oxides which are generated by exposure to ionizing radiation. These same defects are also critical in many other areas of oxide reliability research. As a result of this work, the understanding of the basic physical mechanisms has evolved. This book summarizes the new work and integrates it with older work to form a coherent, unified picture. It is aimed primarily at specialists working on radiation effects and oxide reliability.




Electron Spin Resonance and Radiation Effects in MOS Devices


Book Description

The basic mechanisms were explored of radiation damage in metal/ oxide/silicon (MOS) field effect transistors (MOSFET's) with a combination of electron spin resonance (ESR) and electrical measurements. The major focus has been develop a new and much more sensitive ESR technique called spin dependent recombination (SDR) to study radiation damage in MOSFET's. Keywords: Metal oxide semiconductors; Field effect transistors; Electron spin resonance; Radiation effects.




Radiation Effects in Advanced Semiconductor Materials and Devices


Book Description

This wide-ranging book summarizes the current knowledge of radiation defects in semiconductors, outlining the shortcomings of present experimental and modelling techniques and giving an outlook on future developments. It also provides information on the application of sensors in nuclear power plants.










Evaluation of Radiation Damage to Metal-Oxide-Semiconductor (MOS) Devices


Book Description

The purpose of these experiments was to provide qualitative and quantitative information on the effects of various hydrogen and nitrogen annealing treatments on the radiation hardness, or resistivity to damage, of MOS capacitors. Toward this end, the following tasks were performed: Construction of capacitor TO-5 packages for device evaluation; The experimental determination of the 1 MHz capacitance-voltage bias curves for both the pre- and post-irradiated capacitors; Evaluation of the change in Flat Band Voltage (Delta V sub fb) for the pre- and post-radiation stressed devices; Compilation of all 1 MHz data for cataloging purposes and the establishment of a benchmark for the new computer automated test system; and Reported data to the Contracting Officer's Technical Representative (COTR) on a case-by-case basis, as time was of the essence.







ERDA Energy Research Abstracts


Book Description




ERDA Energy Research Abstracts


Book Description