Handbook of Advanced Materials Testing


Book Description

This work discusses techniques for developing new engineering materials such as elastomers, plastic blends, composites, ceramics and high-temperature alloys. Instrumentation for evaluating their properties and identifying potential end uses are presented.;The book is intended for materials, manufacturing, mechanical, chemical and metallurgical engi




Neutron Scattering in Biology


Book Description

The advent of new neutron facilities and the improvement of existing sources and instruments world wide supply the biological community with many new opportunities in the areas of structural biology and biological physics. The present volume offers a clear description of the various neutron-scattering techniques currently being used to answer biologically relevant questions. Their utility is illustrated through examples by some of the leading researchers in the field of neutron scattering. This volume will be a reference for researchers and a step-by-step guide for young scientists entering the field and the advanced graduate student.




Vibrational Spectroscopy With Neutrons - With Applications In Chemistry, Biology, Materials Science And Catalysis


Book Description

Inelastic neutron scattering (INS) is a spectroscopic technique in which neutrons are used to probe the dynamics of atoms and molecules in solids and liquids. This book is the first, since the late 1960s, to cover the principles and applications of INS as a vibrational-spectroscopic technique. It provides a hands-on account of the use of INS, concentrating on how neutron vibrational spectroscopy can be employed to obtain chemical information on a range of materials that are of interest to chemists, biologists, materials scientists, surface scientists and catalyst researchers. This is an accessible and comprehensive single-volume primary text and reference source.




Elements of Slow-Neutron Scattering


Book Description

This book provides a comprehensive and up-to-date introduction to the fundamental theory and applications of slow-neutron scattering.




Neutron Scattering In Novel Materials, 8th Summer Sch


Book Description

This book provides an introduction to the basic principles of neutron scattering and its application to current problems in condensed matter science and technology. Experiments on novel materials are particularly emphasized.




X-ray and Neutron Techniques for Nanomaterials Characterization


Book Description

Fifth volume of a 40 volume series on nanoscience and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about X-ray and Neutron Techniques for Nanomaterials Characterization. Modern applications and state-of-the-art techniques are covered and make this volume an essential reading for research scientists in academia and industry.




Introduction to the Theory of Thermal Neutron Scattering


Book Description

A long-awaited reprint of the book that has established itself as the classic textbook on neutron scattering. It will be an invaluable introductory text for students taking courses on neutron scattering, as well as for researchers and those who would like to deepen their knowledge on the subject through self-study.




Neutron Scattering – Fundamentals


Book Description

Large-scale structures encompass a broad area of science involving soft matter, biomaterials, and nanotechnology, defined by relatively weak interactions and length scales that extend from nanometer to micrometer. The key features of such systems that require characterization and quantification are surfaces and interfaces, adsorption, thin films, and self-assembly and hierarchical structures in solution and the solid phase. The neutron scattering techniques of neutron reflectivity and small-angle neutron scattering have emerged over the past two decades as important probes of these characteristic features of large-scale structures. In this chapter, the fundamentals of the two techniques are described in detail and the important experimental aspects summarized. Their application over a broad range of science is presented, in a way that highlights their unique properties and their important contribution to the field.




Magnetic Small-Angle Neutron Scattering


Book Description

Magnetic Small-Angle Neutron Scattering provides the first extensive treatment of magnetic small-angle neutron scattering (SANS). The theoretical background required to compute magnetic SANS cross sections and correlation functions related to long-wavelength magnetization structures is laidout. The concepts are scrutinized based on the discussion of experimental neutron data. Regarding prior background knowledge, some familiarity with the basic magnetic interactions and phenomena as well as scattering theory is desired.Besides exposing the different origins of magnetic SANS, and furnishing the basics of the magnetic SANS technique in early chapters, a large part of the book is devoted to a comprehensive treatment of the continuum theory of micromagnetics, as it is relevant for the study of the elastic magneticSANS cross section. Analytical expressions for the magnetization Fourier components allow to highlight the essential features of magnetic SANS and to analyze experimental data both in reciprocal, as well as in real space. Later chapters provide an overview on the magnetic SANS of nanoparticles andso-called complex systems (e.g., ferrofluids, magnetic steels, spin glasses and amorphous magnets). It is this subfield where major progress is expected to be made in the coming years, mainly via the increased usage of numerical micromagnetic simulations (Chapter 7), which is a very promisingapproach for the understanding of the magnetic SANS from systems exhibiting nanoscale spin inhomogeneity.




Neutron Scattering with a Triple-Axis Spectrometer


Book Description

This practical guidebook is written for graduate and post-doctoral students, as well as for experienced researchers new to neutron scattering. Introductory chapters summarize useful scattering formulas and describe the components of a spectrometer. The authors then discuss the resolution function and focusing effects. Simple examples of phonon and magnon measurements are presented. Important chapters cover spurious effects in inelastic and elastic measurements, and how to avoid them. The last chapter covers techniques for, and applications of, polarization analysis.