Neutron Scattering Study of the Iron Based Superconductors


Book Description

In most iron-based and copper-oxide superconductors, the Tc̳ [superconducting critical temperature] gradually increases upon charge carrier doping or isovalent doping. In the under-doped regime of electron-doped BaFe2As2 [Barium Iron 2 Arsenic 2], the superconductivity appears before the complete suppression of AF [antiferromagnetic] long-range order, creating a SC-AF [superconducting-antiferromagnetic] coexisting area. The interplay between long-range magnetic order and superconductivity was studied using a triple-axis thermal neutron spectrometer under an in-plane magnetic field. The suppression of superconductivity and the enhancement of long-range AF order were discovered under 11 Tesla, suggesting the competing nature of these two phases and the itinerant nature of iron-pnictides. We also measured the evolution of the neutron spin resonance in under-doped BaFe1̣ 925Ni0̣ 075As2 [Barium Iron 1.925 Nickel 0.075 As 2] and in over-doped BaFe1̣ 85Ni0̣ 15As2 [Barium Iron 1.85 Nickel 0.15 As 2]. Combining the previous results, we were able to compare the evolution of the neutron spin resonance energies in both BaFe2−x̳Nix̳As2 [Barium Iron (2-x) Nickel (x) Arsenic 2] and BaFe2−x̳Cox̳As2 [Barium Iron (2-x) Cobalt (x) Arsenic 2]. In late 2010, another type of iron-based superconductor alkali iron selenide A0̣ 8Fe1̣ 6+y̳Se2 [Alkali 0.8 Iron (1.6+y) Selenium 2 ] (or "245 system") was discovered. It is a unique system among the family of unconventional (high-Tc̳ [superconducting critical temperature]) superconductors because of its novel phase diagram, insulating parent compounds and huge magnetic moment. Using the inelastic time-of-flight technique, we are able to show that the parent compound can be described well by a local Heisenberg model. The follow up experiments on a superconducting sample (below and above Tc̳) and insulating samples (below and above Tn̳ [Neel Temperature]) provide a more detailed comparison and show more evidence that the alkali iron selenide system is rather different from either itinerant iron-pnictides or local copper-oxide systems.




Phase Diagram and Magnetic Excitations of BaFe2-xNixAs2: A Neutron Scattering Study


Book Description

This book studies the structural, magnetic and electronic properties of, as well as magnetic excitations in, high-temperature BaFe2-xNixAs2 superconductors using neutron diffraction and neutron spectroscopic methods. It describes the precise determination of the phase diagram of BaFe2-xNixAs2, which demonstrates strong magnetoelastic coupling and avoided quantum criticality driven by short-range incommensurate antiferromagnetic order, showing cluster spin glass behavior. It also identifies strong nematic spin correlations in the tetragonal state of uniaxial strained BaFe2-xNixAs2. The nematic correlations have similar temperature and doping dependence as resistivity anisotropy in detwinned samples, which suggests that they are intimately connected. Lastly, it investigates doping evolution of magnetic excitations in overdoped BaFe2-xNixAs2 and discusses the links with superconductivity. This book includes detailed neutron scattering results on BaFe2-xNixAs2 and an introduction to neutron scattering techniques, making it a useful guide for readers pursuing related research.




Iron-based Superconductors


Book Description

From fundamental physics point of view, iron-based superconductors have properties that are more amenable to band structural calculations. This book reviews the progress made in this fascinating field. With contributions from leading experts, the book provides a guide to understanding materials, physical properties, and superconductivity mechanism




Magnetic Excitations in the Iron Based Superconductors


Book Description

Presented within are neutron scattering studies detailing the spin dynamics of BaNi[subscript x]Fe2[subscript x]As2 for x = 0 (parent), 0.04 (underdoped), and 0.1 (optimal) dopings, and FeSe[subscript x]Te1[subscript x] for x = 0 (parent), 0.3 (underdoped), and 0.4 (optimal) dopings. These recently discovered Fe-based superconducting compounds are strikingly similar, in many respects, to the cuprate class of unconventional superconductors and share qualitatively similar phase diagrams consisting of a long range ordered magnetic ground state in the parents which, upon doping, is supplanted in favor of superconductivity. The dopings discussed herein allow us to tune through the phase diagram, beginning with long range ordered parents and ending with optimally doped superconductors with short range magnetic correlations. For BaFe2As2, the excitations in the ordered state are strongly damped and persist up to 300meV. Low energies excitations are centered around Q[subscript AMF] and disperse towards the zone boundary with increasing energy. Only scattering above 100meV is effected when warming above T[subscript N]. In underdoped x = 0.04 BaNi[subscript x]Fe2−[subscript x]As2, we find an order of magnitude reduction in the coupling between layers and a corresponding crossover from 3D to 2D magnetism. In coauthor work on optimal doped x = 0.1 BaNi[subscript x]Fe2−[subscript x]As2 we establish the existence of a 3D resonance mode in the superconducting state. Excitations at optimal doping above the resonance are very similar to the paramagnetic scattering observed in the parent and consists of diffuse scattering below 100meV while above this threshold the signal has similar dispersion, linewidths, and intensity as the ordered state. For FeTe, I discuss our existing efforts and data collection aimed at addressing issues associated with calculating the effective moment from Q, E-integrated data. Tuning through the phase diagram to the x = 0.3 underdoped FeSe[subscript x]Te1−[subscript x] system we find filamentary superconductivity with magnetic spectral weight sitting at both the AFM and nesting vector. Upon reaching x = 0.4 optimal doping, the scattering completely transfers over to the nesting vector and a 2D resonance mode appears below T[subscript c].




Neutron Scattering - Magnetic and Quantum Phenomena


Book Description

Neutron Scattering - Magnetic and Quantum Phenomena provides detailed coverage of the application of neutron scattering in condensed matter research. The book's primary aim is to enable researchers in a particular area to identify the aspects of their work where neutron scattering techniques might contribute, conceive the important experiments to be done, assess what is required to carry them out, write a successful proposal for one of the major user facilities, and perform the experiments under the guidance of the appropriate instrument scientist. An earlier series edited by Kurt Sköld and David L. Price, and published in the 1980s by Academic Press as three volumes in the series Methods of Experimental Physics, was very successful and remained the standard reference in the field for several years. This present work has similar goals, taking into account the advances in experimental techniques over the past quarter-century, for example, neutron reflectivity and spin-echo spectroscopy, and techniques for probing the dynamics of complex materials of technological relevance. This volume complements Price and Fernandez-Alonso (Eds.), Neutron Scattering - Fundamentals published in November 2013. Covers the application of neutron scattering techniques in the study of quantum and magnetic phenomena, including superconductivity, multiferroics, and nanomagnetism Presents up-to-date reviews of recent results, aimed at enabling the reader to identify new opportunities and plan neutron scattering experiments in their own field Provides a good balance between theory and experimental techniques Provides a complement to Price and Fernandez-Alonso (Eds.), Neutron Scattering - Fundamentals published in November 2013




Neutron Scattering Studies of Cuprates and Iron Pnictides


Book Description

Presented within are neutron scattering studies of several different high temperature superconducting materials: BaFe1.9Ni0.1As2 [Barium Iron Nickel Arsenic], BaFe1.85Ni0.15As2 [Barium Iron Nickel Arsenic], Ba0.67K0.33Fe2As2 [Barium Potassium Iron Arsenic], and Pr0.88LaCe0.12CuO4-y [Praseodymium Lanthanum Cerium Copper Oxide]. The main focus is on the magnetic excitations within the systems. For BaFe1.9Ni0.1As2 [Barium Iron Nickel Arsenic], we measured the intensity of its magnetic excitations and compared the results with excitations in antiferromagnetic non-superconducting BaFe2As2 [Barium Iron Arsenic]. We find electron-doping only affects spin excitations below 100 meV while the total size of the magnetic moment and the energy distribution do not change much. It shows that the magnetic moments in both materials are similar to insulating copper oxides, an indicator of the importance of strong electron correlations in high temperature superconductivity. For both BaFe1.85Ni0.15As2 [Barium Iron Nickel Arsenic] and Ba0.67K0.33Fe2As2 [Barium Potassium Iron Arsenic], we use polarized inelastic neutron scattering to study their low-energy spin excitations and their spatial anisotropy. Our neutron polarization analysis reveals that magnetic excitations are isotropic for the in-plane and out-of-plane components in both the normal and superconducting states for BaFe1.85Ni0.15As2 [Barium Iron Nickel Arsenic], while in Ba0.67K0.33Fe2As2 [Barium Potassium Iron Arsenic] large difference in spin gaps were found. A comparison of these results with those of undoped BaFe2As2 [Barium Iron Arsenic] and optimally electron-doped BaFe1.9Ni0.1As2 [Barium Iron Nickel Arsenic] suggests that the spin anisotropy observed Ba0.67K0.33Fe2As2 [Barium Potassium Iron Arsenic] are likely due to their proximity to their parent compound, where spin anisotropy exists below TN [Neel Temperature], while the neutron spin resonance is isotropic in the overdoped regime, consistent with a singlet to triplet excitation. For as-grown and optimal superconducting Pr0.88LaCe0.12CuO4-y [Praseodymium Lanthanum Cerium Copper Oxide] (PLCCO), we measured their magnetic excitations over a wide energy range, and compared their corresponding results. The spectra is considerably larger throughout the whole zone in as-grown PLCCO, than in the optimal superconducting PLCCO, which is very different from the BaFe2As2 [Barium Iron Arsenic] system.




Iron-Based Superconductivity


Book Description

This volume presents an in-depth review of experimental and theoretical studies on the newly discovered Fe-based superconductors. Following the Introduction, which places iron-based superconductors in the context of other unconventional superconductors, the book is divided into three sections covering sample growth, experimental characterization, and theoretical understanding. To understand the complex structure-property relationships of these materials, results from a wide range of experimental techniques and theoretical approaches are described that probe the electronic and magnetic properties and offer insight into either itinerant or localized electronic states. The extensive reference lists provide a bridge to further reading. Iron-Based Superconductivity is essential reading for advanced undergraduate and graduate students as well as researchers active in the fields of condensed matter physics and materials science in general, particularly those with an interest in correlated metals, frustrated spin systems, superconductivity, and competing orders.







Neutron Scattering in Layered Copper-Oxide Superconductors


Book Description

The phenomenon of superconductivity - after its discovery in metals such as mercury, lead, zinc, etc. by Kamerlingh-Onnes in 19]] - has attracted many scientists. Superconductivity was described in a very satisfactory manner by the model proposed by Bardeen, Cooper and Schrieffer, and by the extensions proposed by Abrikosov, Gorkov and Eliashberg. Relations were established between superconductivity and the fundamental properties of solids, resulting in a possible upper limit of the critical temperature at about 23 K. The breakthrough that revolutionized the field was made in 1986 by Bednorz and Muller with the discovery of high-temperature superconductivity in layered copper-oxide perovskites. Today the record in transition temperature is 133 K for a Hg based cuprate system. The last decade has not only seen a revolution in the size of the critical temperature, but also in the myriads of research groups that entered the field. In addition, high-temperature superconductivity became a real interdisciplinary topic and brought together physicists, chemists and materials scientists who started to investigate the new compounds with almost all the available experimental techniques and theoretical methods. As a consequence we have witnessed an avalanche of publications which has never occurred in any field of science so far and which makes it difficult for the individual to be thoroughly informed about the relevant results and trends. Neutron scattering has outstanding properties in the elucidation of the basic properties of high-temperature superconductors.




High-Pressure Single-Crystal Neutron Scattering Study of Magnetic and Fe Vacancy Orders in (Tl,Rb)2 Fe4 Se5 Superconductor


Book Description

We investigate the magnetic and iron vacancy orders in superconducting (Tl,Rb)2Fe4Se5 single-crystals by using a high-pressure neutron diffraction technique. Similar to the temperature effect, the block antiferromagnetic order gradually decreases upon increasing pressure while the Fe vacancy superstructural order remains intact before its precipitous disappearance at the critical pressure Pc = 8.3 GPa. Combined with previously determined Pc for superconductivity, our phase diagram under pressure reveals the concurrence of the block AFM order, the √5 × √5 iron vacancy order and superconductivity for the 245 superconductor. Lastly, a synthesis of current experimental data in a coherent physical picture is attempted.