Neutron Spin Echo Spectroscopy Viscoelasticity Rheology


Book Description

Viscoelasticandtransportpropertiesofpolymersintheliquid(solution,melt)or liquid-like (rubber) state determine their processing and application to a large extent and are of basic physical interest [1—3]. An understanding of these dynamic properties at a molecular level, therefore, is of great importance. However,thisunderstandingiscomplicatedbythefactsthatdi?erentmotional processes may occur on di?erent length scales and that the dynamics are governed by universal chain properties as well as by the special chemical structure of the monomer units [4,5]. The earliest and simplest approach in this direction starts from Langevin equations with solutions comprising a spectrum of relaxation modes [1—4]. Special features are the incorporation of entropic forces (Rouse model, [6]) which relax uctuations of reduced entropy, and of hydrodynamic interactions (Zimm model, [7]) which couple segmental motions via long-range back ow elds in polymer solutions, and the inclusion of topological constraints or entanglements (reptation or tube model, [8—10]) which are mutually imposed within a dense ensemble of chains. Another approach, neglecting the details of the chemical structure and concentratingontheuniversalelementsofchainrelaxation,isbasedondynamic scalingconsiderations[4,11].Inparticularinpolymersolutions,thisapproach o?ers an elegant tool to specify the general trends of polymer dynamics, although it su?ers from the lack of a molecular interpretation. A real test of these theoretical approaches requires microscopic methods, which simultaneously give direct access to the space and time evolution of the segmental di?usion. Here, quasi-elastic scattering methods play a crucial role sincetheyallowthemeasurementofthecorrespondingcorrelationfunctions.In particular,thehigh-resolutionneutronspinecho(NSE)spectroscopy[12—15]is very suitable for such investigations since this method covers an appropriate range in time (0.005)t/ns)40) and space (r/nm [15). Furthermore, the possibilityoflabellingbyhydrogen-deuteriumexchangeallowstheobservation of single-chain behavior even in the melt.




Neutron and X-ray Spectroscopy


Book Description

- Up-to-date account of the principles and practice of inelastic and spectroscopic methods available at neutron and synchrotron sources - Multi-technique approach set around a central theme, rather than a monograph on one technique - Emphasis on the complementarity of neutron spectroscopy and X-ray spectroscopy which are usually treated in separate books




Single-Chain Polymer Nanoparticles


Book Description

This first book on this important and emerging topic presents an overview of the very latest results obtained in single-chain polymer nanoparticles obtained by folding synthetic single polymer chains, painting a complete picture from synthesis via characterization to everyday applications. The initial chapters describe the synthetics methods as well as the molecular simulation of these nanoparticles, while subsequent chapters discuss the analytical techniques that are applied to characterize them, including size and structural characterization as well as scattering techniques. The final chapters are then devoted to the practical applications in nanomedicine, sensing, catalysis and several other uses, concluding with a look at the future for such nanoparticles. Essential reading for polymer and materials scientists, materials engineers, biochemists as well as environmental chemists.




Carbon Nanotube-Polymer Composites


Book Description

The accessible compendium of polymers in carbon nanotubes (CNTs) Carbon nanotubes (CNTs)—extremely thin tubes only a few nanometers in diameter but able to attain lengths thousands of times greater—are prime candidates for use in the development of polymer composite materials. Bringing together thousands of disparate research works, Carbon Nanotube-Polymer Composites: Manufacture, Properties, and Applications covers CNT-polymers from synthesis to potential applications, presenting the basic science and engineering of this dynamic and complex area in an accessible, readable way. Designed to be of use to polymer scientists, engineers, chemists, physicists, and materials scientists, the book covers carbon nanotube fundamentals to help polymer experts understand CNTs, and polymer physics to help those in the CNT field, making it an invaluable resource for anyone working with CNT-polymer composites. Detailed chapters describe the mechanical, rheological, electrical, and thermal properties of carbon nanotube-polymer composites. Including a glossary that defines key terms, Carbon Nanotube-Polymer Composites is essential reading for anyone looking to gain a fundamental understanding of CNTs and polymers, as well as potential and current applications, including electronics (shielding and transparent electrodes), flame retardants, and electromechanics (sensors and actuators), and their challenges.




Nanofillers for Binary Polymer Blends


Book Description

Nanofillers for Binary Polymer Blends covers major advances in the field of polymer-blend nanocomposites. The book encompasses the fundamentals of polymer blends, various nanofillers, experimental techniques used in their fabrication, the characterization of various polymer blend nanocomposites, and theoretical evaluations of various properties. The properties and potential applications that have been achieved in various polymer blends by the addition of nanofillers are also highlighted. Applications for commercial products, including automotive parts, packaging, construction materials, biotechnology, medical devices, building materials, computer housings, car interiors, etc., are also covered in detail.This is an important reference source for materials scientists and engineers looking to increase their understanding of how nanofillers are being used in polymer blends. - Outlines the various types of nanofillers, explaining how the properties of each enhances the morphology, rheology, mechanical, dynamic mechanical, viscoelastic, electrical and thermal properties of polymer blends - Provides information on the theory, modeling and simulation of nano-filled polymer blends - Assesses the mechanism of selective localization of nanofillers in polymer blends, the effect of localization of nanofillers on the microstructure, and the relative performance of polymer blends




Hydrogels


Book Description

This book discusses recent advances in hydrogels, including their generation and applications and presents a compendium of fundamental concepts. It highlights the most important hydrogel materials, including physical hydrogels, chemical hydrogels, and nanohydrogels and explores the development of hydrogel-based novel materials that respond to external stimuli, such as temperature, pressure, pH, light, biochemicals or magnetism, which represent a new class of intelligent materials. With their multiple cooperative functions, hydrogel-based materials exhibit different potential applications ranging from biomedical engineering to water purification systems. This book covers key topics including superabsorbent polymer hydrogel; intelligent hydrogels for drug delivery; hydrogels from catechol-conjugated materials; nanomaterials loaded hydrogel; electrospinning of hydrogels; biopolymers-based hydrogels; injectable hydrogels; interpenetrating-polymer-network hydrogels: radiation- and sonochemical synthesis of micro/nano/macroscopic hydrogels; DNA-based hydrogels; and multifunctional applications of hydrogels. It will prove a valuable resource for researchers working in industry and academia alike.




Layered Double Hydroxide Polymer Nanocomposites


Book Description

Nanocomposites based on layered double hydroxides (LDHs) have recently become a formidable research area due to their amendable properties and potential applications. The distinct properties of LDH polymer nanocomposites include a wide range of chemical compositions, structural homogeneity, unique anion exchanging ability, easy synthesis, high bound water content, memory effect, non-toxicity and biocompatibility. This means that LDH polymer nanocomposites have the potential for new and innovative applications. Layered Double Hydroxide Polymer Nanocomposites presents a comprehensive overview of the recent innovative advances in the fabrication, characterization and applications of LDH polymer nanocomposites. As well as covering fundamental structural and chemical knowledge, this book also explores various properties and characterization techniques including microscopic, spectroscopic and mechanical behaviors. There is also a strong focus on the potential applications of LDH polymer nanocomposites, such as energy, electrical and electronic, electromagnetic shielding, biomedical, agricultural, food packaging and water purification functions. This book provides comprehensive coverage of cutting-edge research in the field of LDH polymer nanocomposites and their future applications. This book will be an essential read for all academics, researchers, engineers and students working in this area. - Fundamental knowledge of LDH polymer nanocomposites, including chemical composition, structural features and fabrication techniques - Provides an analytical overview of the different types of characterization techniques and technologies - Extensive review on cutting-edge research for potential future applications, in a variety of industries




Modeling, Characterization, and Processing of Smart Materials


Book Description

The development, processing, and applications of smart materials presents many challenges, including performance correlations to the nature of their reinforcement and the sustainability of such materials through their recyclability, durability, and reparability. Experts have identified the challenge of achieving sustainable development and in this book highlight how smart materials can provide a solution to the problem. It emphasizes the multidisciplinary nature of smart materials and their potential for enhancing product functionalities and capabilities in different sectors, including the biomedical, pharmaceutical, aerospace, construction, automotive, and food industries. Modeling, Characterization, and Processing of Smart Materials proposes a comprehensive guide to addressing the challenges associated with smart materials, including the need for optimization and sustainability, and provides various nature-inspired algorithms, computational and simulation approaches, and artificial intelligence-based strategies for developing innovative smart materials. It also presents potential solutions for the limitations of smart materials and emphasizes the role of Industry 4.0 in maintaining their sustainability. Overall, this book offers a valuable problem-solution perspective on the development and applications of smart materials, making it an essential reference guide for academic researchers and industrial engineers in the fields of material science, chemical engineering, and environmental engineering.




Smart External Stimulus-Responsive Nanocarriers for Drug and Gene Delivery


Book Description

The concept of smart drug delivery vehicles involves designing and preparing a nanostructure (or microstructure) that can be loaded with a cargo, this can be a therapeutic drug, a contrast agent for imaging, or a nucleic acid for gene therapy. The nanocarrier serves to protect the cargo from degradation by enzymes in the body, to enhance the solubility of insoluble drugs, to extend the circulation half-life, and to enhance its penetration and accumulation at the target site. Importantly, smart nanocarriers can be designed to be responsive to a specific stimulus, so that the cargo is only released or activated when desired. In this volume we cover smart nanocarriers that respond to externally applied stimuli that usually involve application of physical energy. This physical energy can be applied from outside the body and can either cause cargo release, or can activate the nanostructure to be cytotoxic, or both. The stimuli covered include light of various wavelengths (ultraviolet, visible or infrared), temperature (increased or decreased), magnetic fields (used to externally manipulate nanostructures and to activate them), ultrasound, and electrical and mechanical forces. Finally we discuss the issue of nanotoxicology and the future scope of the field.




Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications


Book Description

Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications: Volume Two: Advanced Nanocarriers for Therapeutics discusses, in detail, the recent trends in designing dual and multi-responsive polymers and nanoparticles for safe drug delivery. Chapters cover dual-responsive polymeric nanocarriers for drug delivery and their different stimuli, multi-responsive polymeric nanocarriers, and the therapeutic applications of stimuli-responsive polymers. With an emphasis on advanced medical applications and synergistic operational and technological methodologies for the improvement of polymers systems for the production of stimuli-responsive polymers, this book is essential reading for materials scientists and researchers working in the drug delivery and pharmaceutical industries. As innovation and development in the area of stimuli responsive polymer-based nanomaterials for drug delivery is moving fast and there is an increased global demand for biodegradable and biocompatible responsive polymers and nanoparticles for safe drug delivery, users will find this to be a timely resource. - Focusses on the most advanced technologies, recent evaluation methods, technical aspects, and advanced synthesis techniques stimuli-responsive polymers - Examines advanced medical applications of stimuli responsive polymers - Analyzes synergistic operational and technological methodologies for the improvement of polymer systems for the production of stimuli-responsive polymers in drug delivery