Impact of Fuel Density on Performance and Economy of Research Reactors


Book Description

Research reactor fuel technology continues to evolve, driven in part by international efforts to develop high density fuels to enable the conversion of more reactors from highly enriched uranium (HEU) to low enriched uranium (LEU) fuels. These high density fuels may offer economic benefits for research reactors, despite being more expensive initially, because they offer the prospect of higher per-assembly burnup, thus reducing the number of assemblies that must be procured, and more flexibility in terms of spent fuel management compared to the currently qualified and commercially available LEU silicide fuels. Additionally, these new fuels may offer better performance characteristics. This publication provides a preliminary evaluation of the impacts on research reactor performance and fuel costs from using high density fuel. Several case studies are presented and compared to illustrate these impacts.




Neutronics Studies on the NIST Reactor Using the GA LEU Fuel


Book Description

The National Bureau of Standards Reactor (NBSR) located on the National Institute of Standards and Technology (NIST) Gaithersburg campus, is currently underway of fuel conversion from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. One particular challenging part of the conversion of the NBSR is the high average flux level (2.5x1014 n/cm2-s) required to maintain experimental testing capabilities of the reactor, without significant changes to the external structures of the reactor. Recently the General Atomics (GA) Training Research Isotopes General Atomics (TRIGA) fuel has shown some promising features as a LEU candidate for the high performance research reactors such as the NBSR. The GA fuel has a long history of success in conversion of research reactors since it was developed in 1980s. The UZrH compound in the GA fuel has seen success in long term TRIGA reactors, and is a proven safe LEU alternative. This study performs a neutronics evaluation of the TRIGA fuel under the schema of the NBSR's heavy conversion requirements in order to examine whether the TRIGA fuel is a viable option for conversion of the NBSR. To determine the most optimal path of conversion, we performed a feasibility study with particular regard to the fuel dimensions, fuel rod configurations, cladding, as well as fuel structure selection. Based on the outcome of the feasibility study, an equilibrium core is then generated following the NBSR's current fuel management schema. Key neutronics performance characteristics including flux distribution, power distribution, control rod (i.e., shim arms) worth, as well as kinetics parameters of the equilibrium core are calculated and evaluated. MCNP6, a Monte Carlo based computational modeling software was intensively used to aid in these calculations. The results of this study will provide important insight on the effectiveness of conversion, as well as determine the viability of the conversion from HEU to LEU using the GA fuel.




Impact of Fuel Density on Performance and Economy of Research Reactors


Book Description

Research reactor fuel technology continues to evolve, driven in part by international efforts to develop high density fuels to enable the conversion of more reactors from highly enriched uranium (HEU) to low enriched uranium (LEU) fuels. These high density fuels may offer economic benefits for research reactors, despite being more expensive initially, because they offer the prospect of higher per-assembly burnup, thus reducing the number of assemblies that must be procured, and more flexibility in terms of spent fuel management compared to the currently qualified and commercially available LEU silicide fuels. Additionally, these new fuels may offer better performance characteristics. This publication provides a preliminary evaluation of the impacts on research reactor performance and fuel costs from using high density fuel. Several case studies are presented and compared to illustrate these impacts.




Nuclear Energy Basic Principles


Book Description

Describes the rationale and vision for the peaceful use of nuclear energy. The publication identifies the basic principles that nuclear energy systems must satisfy to fulfil their promise of meeting growing global energy demands.




Molten Salt Reactors and Thorium Energy


Book Description

Molten Salt Reactors and Thorium Energy, Second Edition is a fully updated comprehensive reference on the latest advances in MSR research and technology. Building on the successful first edition, Tom Dolan and the team of experts have fully updated the content to reflect the impressive advances from the last 5 years, ensuring this book continues to be the go-to reference on the topic. This new edition covers progress made in MSR design, details innovative experiments, and includes molten salt data, corrosion studies and deployment plans. The successful case studies section of the first edition have been removed, expanded, and fully updated, and are now published in a companion title called Global Case Studies on Molten Salt Reactors. Readers will gain a deep understanding of the advantages and challenges of MSR development and thorium fuel use, as well as step-by-step guidance on the latest in MSR reactor design. Each chapter provides a clear introduction, covers technical issues and includes examples and conclusions, while promoting the sustainability benefits throughout. - A fully updated comprehensive handbook on Molten Salt Reactors and Thorium Energy, written by a team of global experts - Covers MSR applications, technical issues, reactor types and reactor designs - Includes 3 brand new chapters which reflect the latest advances in research and technology since the first edition published - Presents case studies on molten salt reactors which aid in the transition to net zero by providing abundant clean, safe energy to complement wind and solar powe




Thorium Fuel Cycle


Book Description

Provides a critical review of the thorium fuel cycle: potential benefits and challenges in the thorium fuel cycle, mainly based on the latest developments at the front end of the fuel cycle, applying thorium fuel cycle options, and at the back end of the thorium fuel cycle.




Molybdenum-99 for Medical Imaging


Book Description

The decay product of the medical isotope molybdenum-99 (Mo-99), technetium-99m (Tc-99m), and associated medical isotopes iodine-131 (I-131) and xenon-133 (Xe-133) are used worldwide for medical diagnostic imaging or therapy. The United States consumes about half of the world's supply of Mo-99, but there has been no domestic (i.e., U.S.-based) production of this isotope since the late 1980s. The United States imports Mo-99 for domestic use from Australia, Canada, Europe, and South Africa. Mo-99 and Tc-99m cannot be stockpiled for use because of their short half-lives. Consequently, they must be routinely produced and delivered to medical imaging centers. Almost all Mo-99 for medical use is produced by irradiating highly enriched uranium (HEU) targets in research reactors, several of which are over 50 years old and are approaching the end of their operating lives. Unanticipated and extended shutdowns of some of these old reactors have resulted in severe Mo-99 supply shortages in the United States and other countries. Some of these shortages have disrupted the delivery of medical care. Molybdenum-99 for Medical Imaging examines the production and utilization of Mo-99 and associated medical isotopes, and provides recommendations for medical use.







Material Properties of Unirradiated Uranium-Molybdenum (U-Mo) Fuel for Research Reactors


Book Description

This publication presents the material properties of all unirradiated Uranium-Molybdenum (U-Mo) fuel constituents that are essential for fuel designers and reactor operators to evaluate the fuel's performance and safety for research reactors. Many significant advances in the understanding and development of low enriched uranium U-Mo fuels have been made since 2004, stimulated by the need to understand irradiation behavior and early fuel failures during testing. The publication presents a comprehensive overview of mechanical and physical property data from U-Mo fuel research




Applications of Research Reactors


Book Description

This publication is a comprehensive study that reviews the current situation in a great number of applications of research reactors. It revises the contents of IAEA TECDOC-1234, The Applications of Research Reactors, giving detailed updates on each field of research reactor uses worldwide. Reactors of all sizes and capabilities can benefit from the sharing of current practices and research enabled via this updated version, which describes the requirements for practicing methods as diverse as neutron activation analysis, education and training, neutron scattering and neutron imaging, silicon doping and radioisotope production, material/fuel irradiation and testing, and some others. Many underutilised research reactors can learn how to diversify their technical capabilities, staff and potential commercial partners and users seeking research reactor services and products. The content of the publication has also been strengthened in terms of current issues facing the vast majority of research reactors by including sections describing user and customer relations as well as strategic planning considerations.