Developments in Oil Shale


Book Description

This is a print on demand edition of a hard to find publication. Rising oil prices and concerns over declining petroleum production worldwide revived U.S. interest in oil shale after a two-decade hiatus. In addition to technological challenges left unsolved from previous development efforts, environmental issues remained and new issues have emerged. Challenges to development also include competition with conventional petroleum production in the mid-continent region, and increasing petroleum imports from Canada. Contents of this report: Background; Oil Shale Resource Potential; Challenges to Development; Commercial Leasing Program; R&D Program; Programmatic Environ. Impact Statement; Mineral Leasing Act Amendments; Commercial Lease Sale and Royalty Rates. Illus.




Onshore Unconventional Hydrocarbon Development


Book Description

Oil and gas well completion and stimulation technologies to develop unconventional hydrocarbon resources in the United States have evolved over the past several decades, particularly in relation to the development of shale oil and shale gas. Shale oil and shale gas resources and the technology associated with their production are often termed "unconventional" because the oil and gas trapped inside the shale or other low-permeability rock formation cannot be extracted using conventional technologies. Since about 2005, the application of these technologies to fields in the U.S. have helped produce natural gas and oil in volumes that allowed the country to reduce its crude oil imports by more than 50% and to become a net natural gas exporter. The regional and national economic and energy advances gained through production and use of these resources have been accompanied, however, by rapid expansion of the infrastructure associated with the development of these fields and public concern over the impacts to surface- and groundwater, air, land, and communities where the resources are extracted. The intent of the first day of the workshop of the National Academies of Sciences, Engineering, and Medicine's Roundtable on Unconventional Hydrocarbon Development was to discuss onshore unconventional hydrocarbon development in the context of potential environmental impacts and the ways in which the risks of these kinds of impacts can be managed. Specifically, the workshop sought to examine the lifecycle development of these fields, including decommissioning and reclamation of wells and related surface and pipeline infrastructure, and the approaches from industry practice, scientific research, and regulation that could help to ensure management of the operations in ways that minimize impacts to the environment throughout their active lifetimes and after operations have ceased. This publication summarizes the presentations and discussions from the workshop.




Deep Shale Oil and Gas


Book Description

Natural gas and crude oil production from hydrocarbon rich deep shale formations is one of the most quickly expanding trends in domestic oil and gas exploration. Vast new natural gas and oil resources are being discovered every year across North America and one of those new resources comes from the development of deep shale formations, typically located many thousands of feet below the surface of the Earth in tight, low permeability formations. Deep Shale Oil and Gas provides an introduction to shale gas resources as well as offer a basic understanding of the geomechanical properties of shale, the need for hydraulic fracturing, and an indication of shale gas processing. The book also examines the issues regarding the nature of shale gas development, the potential environmental impacts, and the ability of the current regulatory structure to deal with these issues. Deep Shale Oil and Gas delivers a useful reference that today’s petroleum and natural gas engineer can use to make informed decisions about meeting and managing the challenges they may face in the development of these resources. Clarifies all the basic information needed to quickly understand today’s deeper shale oil and gas industry, horizontal drilling, fracture fluids chemicals needed, and completions Addresses critical coverage on water treatment in shale, and important and evolving technology Practical handbook with real-world case shale plays discussed, especially the up-and-coming deeper areas of shale development







Strategic Advances in Environmental Impact Assessment


Book Description

Shale gas is natural gas that is tightly locked within low permeability sedimentary rock. Recent technological advances are making shale gas reserves increasingly accessible and their recovery more economically feasible. This resource is already being exploited in South Africa, China, the United States and Canada. Shale gas is being produced in large volumes, and will likely be developed in coming years on every continent except Antarctica. Depending on factors such as future natural gas prices and government regulations, further development of shale gas resources could potentially span many decades and involve the drilling of tens of thousands of hydraulically fractured horizontal wells.This development is changing long-held expectations about oil and gas resource availability; several observers have characterized it as a game changer. Abundant, close to major markets, and relatively inexpensive to produce, shale gas represents a major new source of fossil energy. However, the rapid expansion of shale gas development over the past decade has occurred without a corresponding investment in monitoring and research addressing the impacts on the environment, public health, and communities. The primary concerns are the degradation of the quality of groundwater and surface water (including the safe disposal of large volumes of wastewater); the risk of increased greenhouse gas (GHG) emissions (including fugitive methane emissions during and after production), thus exacerbating anthropogenic climate change; disruptive effects on communities and land; and adverse effects on to human health. Other concerns include the local release of air contaminants and the potential for triggering small- to moderate-sized earthquakes in seismically active areas. These concerns will vary by region. The shale gas regions can be found near urban areas, presenting a large diversity in their geology, hydrology, land uses, and population density. The phrase environmental impacts from shale gas development masks many regional differences that are essential to understanding these impacts.




Onshore Unconventional Hydrocarbon Development


Book Description

Oil and gas well completion and stimulation technologies to develop unconventional hydrocarbon resources in the United States have evolved over the past several decades, particularly in relation to the development of shale oil and shale gas. Shale oil and shale gas resources and the technology associated with their production are often termed "unconventional" because the oil and gas trapped inside the shale or other low-permeability rock formation cannot be extracted using conventional technologies. Since about 2005, the application of these technologies to fields in the U.S. have helped produce natural gas and oil in volumes that allowed the country to reduce its crude oil imports by more than 50% and to become a net natural gas exporter. The regional and national economic and energy advances gained through production and use of these resources have been accompanied, however, by rapid expansion of the infrastructure associated with the development of these fields and public concern over the impacts to surface- and groundwater, air, land, and communities where the resources are extracted. A workshop on December 1 and 2, 2016 at the National Academy of Sciences in Washington, DC, explored the management of risk related to the development of onshore unconventional oil and gas resources such as shale oil and shale gas. The second part of the workshop, on December 2, addressed issues associated with induced seismicity and managing the risk of induced seismic events associated with development of oil and gas fields. This publication summarizes the presentations and discussions from this second day of the workshop.







Developments in Oil Shale


Book Description

The Green River oil shale formation in Colorado, Utah, and Wyoming is estimated to hold the equivalent of 1.38 trillion barrels of oil equivalent in place. The shale is generally acknowledged as a rich potential resource; however, it has not generally proved to be economically recoverable. Thus, it is considered to be a contingent resource and not a true reserve. Also, the finished products that can be produced from oil shale are limited in range to primarily diesel and jet fuel. Earlier attempts to develop oil shale under the 1970s era Department of Energy (DOE) Synthetic Fuels program and the later Synthetic Fuels Corporation loan guarantees ended after the rapid decline of oil prices and development of new oil fields outside the Middle East. Improvements taking place at the time in conventional refining enabled increased production of transportation fuels over heavy heating oils (which were being phased out in favor of natural gas). Rising oil prices and concerns over declining petroleum production worldwide revived United States interest in oil shale after a two-decade hiatus. In addition to technological challenges left unsolved from previous development efforts, environmental issues remained and new issues have emerged. Estimates of the ultimately recoverable resource also vary. Challenges to development also include competition with conventional petroleum production in the mid-continent region, and increasing petroleum imports from Canada. The region's isolation from major refining centers in the Gulf Coast may leave production stranded if pipeline capacity is not increased.