Inverse Problems of Vibrational Spectroscopy


Book Description

The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.




Inverse Problems of Vibrational Spectroscopy


Book Description

The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.




Inverse Problems in Engineering Mechanics III


Book Description

Inverse Problems are found in many areas of engineering mechanics and there are many successful applications e.g. in non-destructive testing and characterization of material properties by ultrasonic or X-ray techniques, thermography, etc. Generally speaking, inverse problems are concerned with the determination of the input and the characteristics of a system, given certain aspects of its output. Mathematically, such problems are ill-posed and have to be overcome through development of new computational schemes, regularization techniques, objective functionals, and experimental procedures. This volume contains a selection of peer-reviewed papers presented at the International Symposium on Inverse Problems in Engineering Mechanics (ISIP2001), held in February of 2001 in Nagano, Japan, where recent development in inverse problems in engineering mechanics and related topics were discussed. The following general areas in inverse problems in engineering mechanics were the subjects of the ISIP2001: mathematical and computational aspects of inverse problems, parameter or system identification, shape determination, sensitivity analysis, optimization, material property characterization, ultrasonic non-destructive testing, elastodynamic inverse problems, thermal inverse problems, and other engineering applications. These papers can provide a state-of-the-art review of the research on inverse problems in engineering mechanics.







Optimization and Regularization for Computational Inverse Problems and Applications


Book Description

"Optimization and Regularization for Computational Inverse Problems and Applications" focuses on advances in inversion theory and recent developments with practical applications, particularly emphasizing the combination of optimization and regularization for solving inverse problems. This book covers both the methods, including standard regularization theory, Fejer processes for linear and nonlinear problems, the balancing principle, extrapolated regularization, nonstandard regularization, nonlinear gradient method, the nonmonotone gradient method, subspace method and Lie group method; and the practical applications, such as the reconstruction problem for inverse scattering, molecular spectra data processing, quantitative remote sensing inversion, seismic inversion using the Lie group method, and the gravitational lensing problem. Scientists, researchers and engineers, as well as graduate students engaged in applied mathematics, engineering, geophysics, medical science, image processing, remote sensing and atmospheric science will benefit from this book. Dr. Yanfei Wang is a Professor at the Institute of Geology and Geophysics, Chinese Academy of Sciences, China. Dr. Sc. Anatoly G. Yagola is a Professor and Assistant Dean of the Physical Faculty, Lomonosov Moscow State University, Russia. Dr. Changchun Yang is a Professor and Vice Director of the Institute of Geology and Geophysics, Chinese Academy of Sciences, China.




Computational Methods for Applied Inverse Problems


Book Description

Nowadays inverse problems and applications in science and engineering represent an extremely active research field. The subjects are related to mathematics, physics, geophysics, geochemistry, oceanography, geography and remote sensing, astronomy, biomedicine, and other areas of applications. This monograph reports recent advances of inversion theory and recent developments with practical applications in frontiers of sciences, especially inverse design and novel computational methods for inverse problems. The practical applications include inverse scattering, chemistry, molecular spectra data processing, quantitative remote sensing inversion, seismic imaging, oceanography, and astronomical imaging. The book serves as a reference book and readers who do research in applied mathematics, engineering, geophysics, biomedicine, image processing, remote sensing, and environmental science will benefit from the contents since the book incorporates a background of using statistical and non-statistical methods, e.g., regularization and optimization techniques for solving practical inverse problems.




Inverse Problems, Tomography, and Image Processing


Book Description

Proceedings of Sessions from the First Congress of the International Society for Analysis, Applications, and Computind held in Newark, Delaware, June 2-6, 1997







Inverse Heat Transfer


Book Description

This book introduces the fundamental concepts of inverse heat transfer solutions and their applications for solving problems in convective, conductive, radiative, and multi-physics problems. Inverse Heat Transfer: Fundamentals and Applications, Second Edition includes techniques within the Bayesian framework of statistics for the solution of inverse problems. By modernizing the classic work of the late Professor M. Necati Özisik and adding new examples and problems, this new edition provides a powerful tool for instructors, researchers, and graduate students studying thermal-fluid systems and heat transfer. FEATURES Introduces the fundamental concepts of inverse heat transfer Presents in systematic fashion the basic steps of powerful inverse solution techniques Develops inverse techniques of parameter estimation, function estimation, and state estimation Applies these inverse techniques to the solution of practical inverse heat transfer problems Shows inverse techniques for conduction, convection, radiation, and multi-physics phenomena M. Necati Özisik (1923–2008) retired in 1998 as Professor Emeritus of North Carolina State University’s Mechanical and Aerospace Engineering Department. Helcio R. B. Orlande is a Professor of Mechanical Engineering at the Federal University of Rio de Janeiro (UFRJ), where he was the Department Head from 2006 to 2007.




Operator Theory and Ill-Posed Problems


Book Description

This book consists of three major parts. The first two parts deal with general mathematical concepts and certain areas of operator theory. The third part is devoted to ill-posed problems. It can be read independently of the first two parts and presents a good example of applying the methods of calculus and functional analysis. The first part "Basic Concepts" briefly introduces the language of set theory and concepts of abstract, linear and multilinear algebra. Also introduced are the language of topology and fundamental concepts of calculus: the limit, the differential, and the integral. A special section is devoted to analysis on manifolds. The second part "Operators" describes the most important function spaces and operator classes for both linear and nonlinear operators. Different kinds of generalized functions and their transformations are considered. Elements of the theory of linear operators are presented. Spectral theory is given a special focus. The third part "Ill-Posed Problems" is devoted to problems of mathematical physics, integral and operator equations, evolution equations and problems of integral geometry. It also deals with problems of analytic continuation. Detailed coverage of the subjects and numerous examples and exercises make it possible to use the book as a textbook on some areas of calculus and functional analysis. It can also be used as a reference textbook because of the extensive scope and detailed references with comments.