New Bioprocessing Strategies: Development and Manufacturing of Recombinant Antibodies and Proteins


Book Description

This book review series presents current trends in modern biotechnology. The aim is to cover all aspects of this interdisciplinary technology where knowledge, methods and expertise are required from chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science. Volumes are organized topically and provide a comprehensive discussion of developments in the respective field over the past 3-5 years. The series also discusses new discoveries and applications. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. In general, special volumes are edited by well-known guest editors. The series editor and publisher will however always be pleased to receive suggestions and supplementary information. Manuscripts are accepted in English.




Formulation and Process Development Strategies for Manufacturing Biopharmaceuticals


Book Description

A real-world guide to the production and manufacturing of biopharmaceuticals While much has been written about the science of biopharmaceuticals, there is a need for practical, up-to-date information on key issues at all stages of developing and manufacturing commercially viable biopharmaceutical drug products. This book helps fill the gap in the field, examining all areas of biopharmaceuticals manufacturing, from development and formulation to production and packaging. Written by a group of experts from industry and academia, the book focuses on real-world methods for maintaining product integrity throughout the commercialization process, clearly explaining the fundamentals and essential pathways for all development stages. Coverage includes: Research and early development phase appropriate approaches for ensuring product stability Development of commercially viable formulations for liquid and lyophilized dosage forms Optimal storage, packaging, and shipping methods Case studies relating to therapeutic monoclonal antibodies, recombinant proteins, and plasma fractions Useful analysis of successful and failed products Formulation and Process Development Strategies for Manufacturing Biopharma-ceuticals is an essential resource for scientists and engineers in the pharmaceutical and biotech industries, for government and regulatory agencies, and for anyone with an interest in the latest developments in the field.







Monoclonal Antibody Production


Book Description

The American Anti-Vivisection Society (AAVS) petitioned the National Institutes of Health (NIH) on April 23, 1997, to prohibit the use of animals in the production of mAb. On September 18, 1997, NIH declined to prohibit the use of mice in mAb production, stating that "the ascites method of mAb production is scientifically appropriate for some research projects and cannot be replaced." On March 26, 1998, AAVS submitted a second petition, stating that "NIH failed to provide valid scientific reasons for not supporting a proposed ban." The office of the NIH director asked the National Research Council to conduct a study of methods of producing mAb. In response to that request, the Research Council appointed the Committee on Methods of Producing Monoclonal Antibodies, to act on behalf of the Institute for Laboratory Animal Research of the Commission on Life Sciences, to conduct the study. The 11 expert members of the committee had extensive experience in biomedical research, laboratory animal medicine, animal welfare, pain research, and patient advocacy (Appendix B). The committee was asked to determine whether there was a scientific necessity for the mouse ascites method; if so, whether the method caused pain or distress; and, if so, what could be done to minimize the pain or distress. The committee was also asked to comment on available in vitro methods; to suggest what acceptable scientific rationale, if any, there was for using the mouse ascites method; and to identify regulatory requirements for the continued use of the mouse ascites method. The committee held an open data-gathering meeting during which its members summarized data bearing on those questions. A 1-day workshop (Appendix A) was attended by 34 participants, 14 of whom made formal presentations. A second meeting was held to finalize the report. The present report was written on the basis of information in the literature and information presented at the meeting and the workshop.




Novel Therapeutic Proteins


Book Description

This book describes medical applications of recombinant proteins and monoclonal antibodies, some of which have already been on the market for several years while others have only recently been launched. It also highlights the manufacturing processes for individual products, the strategies that were taken by companies in the clinical development, and the hurdles that were encountered in clinical trials and had to be overcome before approval by regulatory authorities. Finally, this book illustrates strategies to modify and improve the pharmacodynamic and pharmacokinetic properties of naturally occurring proteins thus paving the way for a new era in biotechnology.




The Future of Pharmaceuticals


Book Description

Before now, biological systems could only be expressed in terms of linear relationships, however, as knowledge grows and new techniques of analysis on biological systems is made available, we are realizing the non-linearity of these systems. The concepts and techniques of nonlinear analysis allow for more realistic and accurate models in science. The Future of Pharmaceuticals: A Nonlinear Analysis provides an opportunity to understand the non-linearity of biological systems and its application in various areas of science, primarily pharmaceutical sciences. This book will benefit professionals in pharmaceutical industries, academia, and policy who are interested in an entirely new approach to how we will treat disease in the future. Key Features: Addresses a new approach of nonlinear analysis. Applies a theory of projection to chalk out the future, instead of basing on linear evolution. Provides an opportunity to better understand the non-linearity in biological systems and its applications in various areas of science, primarily pharmaceutical sciences. Helps change the thought process for those looking for answers to their questions which they do not find in the linear relationship approach. Encourages a broader perspective for the creative process of drug development.




Cell Culture Engineering


Book Description

Offers a comprehensive overview of cell culture engineering, providing insight into cell engineering, systems biology approaches and processing technology In Cell Culture Engineering: Recombinant Protein Production, editors Gyun Min Lee and Helene Faustrup Kildegaard assemble top class authors to present expert coverage of topics such as: cell line development for therapeutic protein production; development of a transient gene expression upstream platform; and CHO synthetic biology. They provide readers with everything they need to know about enhancing product and bioprocess attributes using genome-scale models of CHO metabolism; omics data and mammalian systems biotechnology; perfusion culture; and much more. This all-new, up-to-date reference covers all of the important aspects of cell culture engineering, including cell engineering, system biology approaches, and processing technology. It describes the challenges in cell line development and cell engineering, e.g. via gene editing tools like CRISPR/Cas9 and with the aim to engineer glycosylation patterns. Furthermore, it gives an overview about synthetic biology approaches applied to cell culture engineering and elaborates the use of CHO cells as common cell line for protein production. In addition, the book discusses the most important aspects of production processes, including cell culture media, batch, fed-batch, and perfusion processes as well as process analytical technology, quality by design, and scale down models. -Covers key elements of cell culture engineering applied to the production of recombinant proteins for therapeutic use -Focuses on mammalian and animal cells to help highlight synthetic and systems biology approaches to cell culture engineering, exemplified by the widely used CHO cell line -Part of the renowned "Advanced Biotechnology" book series Cell Culture Engineering: Recombinant Protein Production will appeal to biotechnologists, bioengineers, life scientists, chemical engineers, and PhD students in the life sciences.




Process Control, Intensification, and Digitalisation in Continuous Biomanufacturing


Book Description

Process Control, Intensification, and Digitalisation in Continuous Biomanufacturing Explore new trends in continuous biomanufacturing with contributions from leading practitioners in the field With the increasingly widespread acceptance and investment in the ??technology, the last decade has demonstrated the utility of continuous ??processing in the pharmaceutical industry. In Process Control, Intensification, and Digitalisation in Continuous Biomanufacturing, distinguished biotechnologist Dr. Ganapathy Subramanian delivers a comprehensive exploration of the potential of the continuous processing of biological products and discussions of future directions in advancing continuous processing to meet new challenges and demands in the manufacture of therapeutic products. A stand-alone follow-up to the editor’s Continuous Biomanufacturing: Innovative Technologies and Methods published in 2017, this new edited volume focuses on critical aspects of process intensification, process control, and the digital transformation of biopharmaceutical processes. In addition to topics like the use of multivariant data analysis, regulatory concerns, and automation processes, the book also includes: Thorough introductions to capacitance sensors to control feeding strategies and the continuous production of viral vaccines Comprehensive explorations of strategies for the continuous upstream processing of induced microbial systems Practical discussions of preparative hydrophobic interaction chromatography and the design of modern protein-A-resins for continuous biomanufacturing In-depth examinations of bioprocess intensification approaches and the benefits of single use for process intensification Perfect for biotechnologists, bioengineers, pharmaceutical engineers, and process engineers, Process Control, Intensification, and Digitalisation in Continuous Biomanufacturing is also an indispensable resource for chemical engineers seeking a one-stop reference on continuous biomanufacturing.




Process Scale Purification of Antibodies


Book Description

Promoting a continued and much-needed renaissance in biopharmaceutical manufacturing, this book covers the different strategies and assembles top-tier technology experts to address the challenges of antibody purification. • Updates existing topics and adds new ones that include purification of antibodies produced in novel production systems, novel separation technologies, novel antibody formats and alternative scaffolds, and strategies for ton-scale manufacturing • Presents new and updated discussions of different purification technologies, focusing on how they can address the capacity crunch in antibody purification • Emphasizes antibodies and innovative chromatography methods for processing




Introduction to Antibody Engineering


Book Description

This highly readable textbook serves as a concise and engaging primer to the emerging field of antibody engineering and its various applications. It introduces readers to the basic science and molecular structure of antibodies, and explores how to characterize and engineer them. Readers will find an overview of the latest methods in antibody identification, improvement and biochemical engineering. Furthermore, alternative antibody formats and bispecific antibodies are discussed. The book’s content is based on lectures for the specializations “Protein Engineering” and “Medical Biotechnology” within the Master’s curriculum in “Biotechnology.” The lectures have been held at the University of Natural Resources and Life Sciences, Vienna, in cooperation with the Medical University of Vienna, since 2012 and are continuously adapted to reflect the latest developments in the field. The book addresses Master’s and PhD students in biotechnology, molecular biology and immunology, and all those who are interested in antibody engineering.