New Chemistry And New Opportunities From The Expanding Protein Universe - Proceedings Of The 23rd International Solvay Conference On Chemistry


Book Description

A select group of 40 eminent scientists from all parts of the world met to consider the current state of chemical and biological knowledge on the ever-expanding protein universe, and to discuss emerging opportunities for the foreseeable future. Scientific approaches to discover, characterize, and regulate protein functions were discussed over a range of disciplines, including natural product chemistry, microbiology, enzymology, biochemistry, structural biology, chemical biology, and glycobiology. Some notable highlights included discovery of new enzymatic pathways, innovative carbohydrate chemistry, design of proteins containing unnatural amino acids, structural elucidation of complex supramolecular machines, and design and application of small molecule drugs, biologics and biosimilars.This fascinating compendium of scientific presentations and in-depth discussions affords a unique perspective on today's protein chemistry and biology as well as on the challenges for tomorrow.




Chemistry Challenges Of The 21st Century - Proceedings Of The 100th Anniversary Of The 26th International Solvay Conference On Chemistry


Book Description

Chaired by K Wüthrich (Nobel Laureate in Chemistry, 2002) and co-chaired by B Feringa (Nobel Laureate in Chemistry, 2016), this by-invitation-only conference gathered around 40 participants, who are well-recognized leaders in the diverse field of Chemistry. The highlights of the Conference Proceedings include short prepared statements by all the participants, and the recordings of lively discussions on the current and future perspectives in the field of chemistry, with topics ranging from renewable energy and new materials to vaccines.




Computational Modeling: From Chemistry To Materials To Biology - Proceedings Of The 25th Solvay Conference On Chemistry


Book Description

Chaired by K Wüthrich (Nobel Laureate in Chemistry, 2002) and co-chaired by B Weckhuysen, this by-invitation-only conference has gathered 39 participants — who are leaders in the field of computational modeling and its applications in Chemistry, Material Sciences and Biology. Highlights of the Conference Proceedings are short, prepared statements by all the participants and the records of lively discussions on the current and future perspectives in the field of computational modeling, from chemistry to materials to biology.




Exploring and Expanding the Protein Universe with Non-Canonical Amino Acids


Book Description

The site-specific incorporation of unnatural or non-canonical amino acids (ncAAs) into proteins is a universally important tool for systems bioengineering at the interface of chemistry, biology, and biotechnology. The synergistic use of ncAA and related technologies (e.g. Xeno nucleic acids) should enable: i) New opportunities to manipulate, design and elucidate protein structure, dynamics, and function. ii) A deeper understanding of natural and evolved translational systems and their importance for artificial biology. iii) The synthesis of novel biopolymers, creating a solid basis for synthetic cells, which is also an important technology in the production of new classes of medically relevant protein-based scaffolds. Research on reprogrammed protein translation has now reached an experimental and intellectual maturity: more than 200 ncAA (i.e. more than ten times larger variety than standard amino acids) have been introduced into proteins using different routes: genetic code expansion (GCE), selective pressure incorporation (SPI), chemical mutagenesis, protein semi-synthesis, and peptide synthesis.




RNA


Book Description

This publication summarizes the current status of our understanding of RNA, with particular emphasis on the chemistry of this key biological molecule. The various RNAs covered are messenger RNA, ribosomal RNA, transfer RNA and RNA enzymes (ribozymes). The different chapters detail biophysical and chemical methods to investigate RNA structure and function, the synthesis of native and modified RNAs and the latest advances in our understanding of the vast array of biological processes in which RNA is involved.




Humanity in a Creative Universe


Book Description

In the hard sciences, which can often feel out of grasp for many lay readers, there are "great thinkers" who go far beyond the equations, formulas, and research. Minds such as Stephen Hawking philosophize about the functions and nature of the universe, the implications of our existence, and other impossibly fascinating, yet difficult questions. Stuart A. Kauffman is one of those great thinkers. He has dedicated his lifetime to researching "complex systems" at prestigious institutions and now writes his treatise on the most complex system of all: our universe. A recent Scientific American article claims that "philosophy begins where physics ends, and physics begins where philosophy ends," and perhaps no better quote sums up what Kauffman's latest book offers. Grounded in his rigorous training and research background, Kauffman is inter-disciplinary in every sense of the word, sorting through the major questions and theories in biology, physics, and philosophy. Best known for his philosophy of evolutionary biology, Kauffman coined the term "prestatability" to call into question whether science can ever accurately and precisely predict the future development of biological features in organisms. As evidenced by the title's mention of creativity, the book refreshingly argues that our preoccupation to explain all things with scientific law has deadened our creative natures. In this fascinating read, Kauffman concludes that the development of life on earth is not entirely predictable, because no theory could ever fully account for the limitless variations of evolution. Sure to cause a stir, this book will be discussed for years to come and may even set the tone for the next "great thinker."




Annual Reports in Computational Chemistry


Book Description

Annual Reports in Computational Chemistry is a new periodical providing timely and critical reviews of important topics in computational chemistry as applied to all chemical disciplines. Topics covered include quantum chemistry, molecular mechanics, force fields, chemical education, and applications in academic and industrial settings. Each volume is organized into (thematic) sections with contributions written by experts. Focusing on the most recent literature and advances in the field, each article covers a specific topic of importance to computational chemists. Annual Reports in Computational Chemistry is a "must" for researchers and students wishing to stay up-to-date on current developments in computational chemistry.* Broad coverage of computational chemistry and up-to-date information * Topics covered include bioinformatics, drug discovery, protein NMR, simulation methodologies, and applications in academic and industrial settings * Each chapter reviews the most recent literature on a specific topic of interest to computational chemists




Computational Protein Design


Book Description

The aim this volume is to present the methods, challenges, software, and applications of this widespread and yet still evolving and maturing field. Computational Protein Design, the first book with this title, guides readers through computational protein design approaches, software and tailored solutions to specific case-study targets. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Computational Protein Design aims to ensure successful results in the further study of this vital field.




Plant Behaviour and Intelligence


Book Description

This book provides a convincing argument for the view that whole cells and whole plants growing in competitive wild conditions show aspects of plant behaviour that can be accurately described as 'intelligent'. Trewavas argues that behaviour, like intelligence, must be assessed within the constraints of the anatomical and physiological framework of the organism in question. The fact that plants do not have centralized nervous systems for example, does not exclude intelligent behaviour. Outside the human dimension, culture is thought largely absent and fitness is the biological property of value. Thus, solving environmental problems that threaten to reduce fitness is another way of viewing intelligent behaviour and has a similar meaning to adaptively variable behaviour. The capacity to solve these problems might be considered to vary in different organisms, but variation does not mean absence. By extending these ideas into a book that allows a critical and amplified discussion, the author hopes to raise an awareness of the concept of purposive behaviour in plants.




Essays in Bioinformatics


Book Description