New Composite Materials


Book Description

This timely volume presents a range of critical topics on the use of composite materials in civil engineering; industrial, commercial, and residential structures; and historic buildings. Structural strengthening techniques based on composite materials, including, but not limited to, fiber-reinforced polymers, fiber-reinforced glasses, steel-reinforced polymers, and steel-reinforced glasses represent a practice employed internationally and have become an important component in the restoration of buildings impacted by natural hazards and other destructive forces. New Composite Materials: Selection, Design, and Application stands as a highly relevant and diverse effort, distinct from other technical publications dealing with building issues. The book focuses extensively on characterization of techniques employed for structural restoration and examines in detail an assortment of materials such as concrete, wood, masonry, and steel.




Composite Materials


Book Description

Composite materials have been well developed to meet the challenges of high-performing material properties targeting engineering and structural applications. The ability of composite materials to absorb stresses and dissipate strain energy is vastly superior to that of other materials such as polymers and ceramics, and thus they offer engineers many mechanical, thermal, chemical and damage-tolerance advantages with limited drawbacks such as brittleness. Composite Materials: Manufacturing, Properties and Applications presents a comprehensive review of current status and future directions, latest technologies and innovative work, challenges and opportunities for composite materials. The chapters present latest advances and comprehensive coverage of material types, design, fabrication, modelling, properties and applications from conventional composite materials to advanced composites such as nanocomposites, self-healing and smart composites. The book targets researchers in the field of advanced composite materials and ceramics, students of materials science and engineering at the postgraduate level, as well as material engineers and scientists working in industrial R& D sectors for composite material manufacturing. - Comprehensive coverage of material types, design, fabrication, modelling, properties and applications from conventional composite materials to advanced composites such as nanocomposites, self-healing and smart composites - Features latest advances in terms of mechanical properties and other material parameters which are essential for designers and engineers in the composite and composite reinforcement manufacturing industry, as well as all those with an academic research interest in the subject - Offers a good platform for end users to refer to the latest technologies and topics fitting into specific applications and specific methods to tackle manufacturing or material processing issues in relation to different types of composite materials




Composite Materials


Book Description

Focusing on the relationship between structure and properties, this is a well-balanced treatment of the mechanics and the materials science of composites, while not neglecting the importance of processing. This updated second edition contains new chapters on fatigue and creep of composites, and describes in detail how the various reinforcements, the materials in which they are embedded, and of the interfaces between them, control the properties of the composite materials at both the micro- and macro-levels. Extensive use is made of micrographs and line drawings, and examples of practical applications in various fields are given throughout the book, together with extensive references to the literature. Intended for use in graduate and upper-division undergraduate courses, this book will also prove a useful reference for practising engineers and researchers in industry and academia.




Principles of the Manufacturing of Composite Materials


Book Description

Based on 15 years of composites manufacturing instruction, the Principles of the Manufacturing of Composite Materials is the first text to offer both a practical and analytic approach to composite manufacturing processes. It ties together key tools for analyzing the mechanics of composites with the processes whereby composite products are fabricated, whether by hand lay-up or through automated processes. The book outlines the principles of chemistry, physics, materials science and engineering and shows how these are connected to the design and production of a variety of composites, primarily polymeric. It thus provides analytic, quantitative tools to answer the questions of why certain materials are linked with specific processes, and why products are manufactured by one process rather than another. All phases of matrix material formation are explained, as are practical design details for fabrics, autoclaving, filament winding, pultrusion, liquid composite molding, hand techniques, joints and joint bonding, and more. A special section is devoted to nanocomposites. The book includes exercises for university students and practitioners.




Composite Materials


Book Description

The first edition of "Composite Materials" introduced a new way of looking at composite materials. This second edition expands the book’s scope to emphasize application-driven and process-oriented materials development. The approach is vibrant yet functional.




An Introduction to Composite Materials


Book Description

This edition has been greatly enlarged and updated to provide both scientists and engineers with a clear and comprehensive understanding of composite materials. In describing both theoretical and practical aspects of their production, properties and usage, the book crosses the borders of many disciplines. Topics covered include: fibres, matrices, laminates and interfaces; elastic deformation, stress and strain, strength, fatigue crack propagation and creep resistance; toughness and thermal properties; fatigue and deterioration under environmental conditions; fabrication and applications. Coverage has been increased to include polymeric, metallic and ceramic matrices and reinforcement in the form of long fibres, short fibres and particles. Designed primarily as a teaching text for final-year undergraduates in materials science and engineering, this book will also interest undergraduates and postgraduates in chemistry, physics, and mechanical engineering. In addition, it will be an excellent source book for academic and technological researchers on materials.




Composite Materials


Book Description

Responding to the need for a single reference source on the design and applications of composites, Composite Materials: Design and Applications, Second Edition provides an authoritative examination of the composite materials used in current industrial applications and delivers much needed practical guidance to those working in this rapidly d




Introduction to Composite Materials


Book Description

A widely used basic text by two recognized authorities. A unified and disciplined approach; advanced concepts reduced to easy-to-use charts, formulas and numerical examples.




Advanced Composite Materials


Book Description

Composites materials is basically the combining of unique properties of materials to have synergistic effects. A combination of materials is needed to adapt to certain properties for any application area. There is an everlasting desire to make composite materials stronger, lighter or more durable than traditional materials. Carbon materials are known to be attractive in composites because of their combination of chemical and physical properties. In the recent years, development of new composites has been influenced by precision green approaches that restrict hazardous substances and waste created during production. This book ranges from the fundamental principles underpinning the fabrication of different composite materials to their devices, for example, applications in energy harvesting, memory devices, electrochemical biosensing and other advanced composite-based biomedical applications. This book provides a compilation of innovative fabrication strategies and utilization methodologies which are frequently adopted in the advanced composite materials community with respect to developing appropriate composites to efficiently utilize macro and nanoscale features. The key topics are: Pioneer composite materials for printed electronics Current-limiting defects in superconductors High-tech ceramics materials Carbon nanomaterials for electrochemical biosensing Nanostructured ceramics and bioceramics for bone cancer Importance of biomaterials for bone regeneration Tuning hydroxyapatite particles Carbon nanotubes reinforced bioceramic composite Biomimetic prototype interface




Introduction to Composite Materials Design, Second Edition


Book Description

Presenting a wealth of completely revised examples and new information, Introduction to Composite Materials Design, Second Edition greatly improves on the bestselling first edition. It incorporates state-of-the-art advances in knowledge and design methods that have taken place over the last 10 years, yet maintains the distinguishing features and vital content of the original. New material in this second edition: Introduces new background topics, including design for reliability and fracture mechanics Revises and updates information on polymer matrices, modern fibers (e.g., carbon nanotubes, Basalt, Vectran) and fiber forms such as textiles/fabrics Includes new information on Vacuum Assisted Resin Transfer Molding (VARTM) Incorporates major advances in prediction of unidirectional-lamina properties Reworks sections on material failure, including the most advanced prediction and design methodologies, such as in situ strength and Mohr-Coulomb criterion, etc. Covers all aspects of preliminary design, relegating finite element analysis to a separate textbook Discusses methodology used to perform damage mechanics analysis of laminated composites accounting for the main damage modes: longitudinal tension, longitudinal compression, transverse tension, in-plane shear, and transverse compression Presents in-depth analysis of composites reinforced with plain, twill, and satin weaves, as well as with random fiber reinforcements Expands the analysis of thin walled beams with newly developed examples and MATLAB® code Addresses external strengthening of reinforced-concrete beams, columns, and structural members subjected to both axial and bending loads The author distributes 78 fully developed examples throughout the book to illustrate the application of presented analysis techniques and design methodology, making this textbook ideally suited for self-study. Requiring no more than senior undergraduate-level understanding of math and mechanics, it remains an invaluable tool for students in the engineering disciplines, as well as for self-studying, practicing engineers.