Cement Based Materials


Book Description

Cement-based materials have been used by humans nearly since the dawn of civilization. The Egyptians used lime and gypsum cement to bind their aggregate materials, mud and straw, resulting in bricks that are used for building their famous Egyptian pyramids (between 3000 and 2500 BC). Hydrated cement is a cement material bonded together with water and used for building construction; it is characterized by acceptable chemical, physical, thermal, mechanical, and structural stability. It plays a main role in the creation of vessels for storage, roads to travel on, weather-resistant structure for protection, inert hard stabilizer for hazardous wastes, and so on. Due to the composition of these materials and their advantages, it has been practiced in different applications. Cement is an essential component of making concrete, the single most prevalent building material used worldwide for construction, skyscrapers, highways, tunnels, bridges, hydraulic dams, and railway ties. Besides their numerous desired properties, there are some undesirable features. To overcome these disadvantages, several studies were established to prepare, improve, and evaluate innovative cement-based materials. Despite its oldness and deep research, every year several methods and materials evolve and so do cement technology. This book intends to provide a comprehensive overview on recent advances in the evaluation of these materials.




Developments and Applications of Calcium Phosphate Bone Cements


Book Description

This book presents a state-of-the-art review of the latest advances in developing calcium- phosphate bone cements and their applications. It covers the synthesis methods, characterization approaches, material modification and novel binders, as well as the fabrication technologies of calcium-phosphate-based biomaterials in regenerative medicine and their clinical applications. It also highlights methodologies for fabricating scaffolds, biofunctional surfaces/interfaces and subsequently modulating the host response to implantable/injectable materials, and integrates a series of discussions and insights into calcium-phosphate cements and constructs in bone regenerative medicine. As such, the book not only covers the fundamentals but also opens new avenues for meeting future challenges in research and clinical applications.




Advances in Calcium Phosphate Biomaterials


Book Description

Advances in Calcium Phosphate Biomaterials presents a comprehensive, state-of-the-art review of the latest advances in developing calcium phosphate biomaterials and their applications in medicine. It covers the fundamental structures, synthesis methods, characterization methods, and the physical and chemical properties of calcium phosphate biomaterials, as well as the synthesis and properties of calcium phosphate-based biomaterials in regenerative medicine and their clinical applications. The book brings together these new concepts, mechanisms and methods in contributions by both young and “veteran” academics, clinicians, and researchers to forward the knowledge and expertise on calcium phosphate and related materials. Accordingly, the book not only covers the fundamentals but also open new avenues for meeting future challenges in research and clinical applications. Besim Ben-Nissan is a Professor of Chemistry and Forensic Science at the University of Technology, Sydney, Australia




Orthopaedic Bone Cements


Book Description

With an increasing number of bone cements available, it is vital that the correct material is selected for specific clinical procedures. A review of the most recent research in this field, this book covers such topics as hip replacements, verteboplasty and wear particles and osteolysis. It reviews materials and types of cement such as acrylic, polymethylmethacrylate and calcium phosphate cements and address the mechanical properties of bone cements such as fracture toughness and dynamic creep. The book closes with an examination of methods to enhance the properties of bone cements such as antibiotic loaded bone cements and bioactive cements.




Chemically Bonded Phosphate Ceramics


Book Description

Chemically Bonded Phosphate Ceramics brings together the latest developments in chemically bonded phosphate ceramics (CBPCs), including several novel ceramics, from US Federal Laboratories such as Argonne, Oak Ridge, and Brookhaven National Laboratories, as well as Russian and Ukrainian nuclear institutes. Coupled with further advances in their use as biomaterials, these materials have found uses in diverse fields in recent years. Applications range from advanced structural materials to corrosion and fire protection coatings, oil-well cements, stabilization and encapsulation of hazardous and radioactive waste, nuclear radiation shielding materials, and products designed for safe storage of nuclear materials. Such developments call for a single source to cover their science and applications. This book is a unique and comprehensive source to fulfil that need. In the second edition, the author covers the latest developments in nuclear waste containment and introduces new products and applications in areas such as biomedical implants, cements and coatings used in oil-well and other petrochemical applications, and flame-retardant anti-corrosion coatings. - Explores the key applications of CBPCs including nuclear waste storage, oil-well cements, anticorrosion coatings and biomedical implants - Demystifies the chemistry, processes and production methods of CBPCs - Draws on 40 years of developments and applications in the field, including the latest developments from USA, Europe, Ukraine, Russia, China and India




Bioceramics and their Clinical Applications


Book Description

Bioceramics have been used very successfully within the human body for many years. They are commonly used in orthopaedic surgery and dentistry but they are potentially suitable for a wide range of important applications within the medical device industry. This important book reviews the range of bioceramics, their properties and range of clinical uses.Chapters in the first section of the book discusses issues of significance to a range of bioceramics such as their structure, mechanical properties and biological interactions. The second part reviews the fabrication, microstructure and properties of specific bioceramics and glasses, concentrating on the most promising materials. These include alumina and zirconia ceramics, bioactive glasses and bioactive glass-ceramics, calcium sulphate, tricalcium phosphate-based ceramics, hydroxyapatite, tricalcium phosphate/hydroxyapatite biphasic ceramics, si-substrated hydroxyapatite, calcium phosphate cement, calcium phosphate coating, titania-based materials, ceramic-polymer composites, dental ceramics and dental glass-ceramics. The final group of chapters reviews the clinical applications of bioceramics in joint replacement, bone grafts, tissue engineering and dentistry.Bioceramics and their clinical applications is written by leading academics from around the world and it provides an authoritative review of this highly active area of research. This book is a useful resource for biomaterials scientists and engineers, as well as for clinicians and the academic community. - Provides an authoritative review of this highly active area of research - Discusses issues of significance of a range of bioceramics such as their structure, mechanical properties and biological interactions - Reviews the clinical applications of bioceramics in joint replacement, bone grafts, tissue engineering and dentistry




Calcium Orthophosphates


Book Description

Due to a great chemical similarity with the biological calcified tissues, many calcium orthophosphates possess remarkable biocompatibility and bioactivity. Materials scientists use this property extensively to construct artificial bone grafts that are either entirely made of or only surface-coated with the biologically relevant calcium orthophospha







Calcium Phosphate


Book Description

Calcium phosphates are key materials to sustain life on Earth as constituent of the gravity-defying bony skeletons of all vertebrates as well as the dentine and enamel materials of teeth. This book contains accounts on the historical development of the scientific knowledge gained on calcium orthophosphates, the latest information on the structure of carbonate-bearing hydroxyapatite, the role played by small amounts of molecular water residing in synthetic hydroxyapatite and bone mineral, as well as the nature of oxyhydroxyapatite and oxyapatite as intermediates during dehydroxylation of hydroxyapatite, pertinent information to unravel the complex processes relevant for plasma-sprayed calcium phosphate coatings on endoprosthetic implants. This book is recommended to industrial and academic professionals in the fields of medical technology, orthopedy, dentistry, biology, materials science, chemistry, environmental engineering, and mineralogy.




Novel Advances and Approaches in Biomedical Materials Based on Calcium Phosphates


Book Description

Research into the use of calcium phosphates in the development and clinical application of biomedical materials has been a significantly diverse activity conducted by a wide range of scientists, engineers, and medical practitioners, among others. The field of research in this area can, hence, be truly defined as interdisciplinary, and much interesting work leading to imaginative and innovative solutions for the improvement of health outcomes continues to be generated. It has been the intention of this Special Issue to summarise a number of current topical research advances in this area, as well as to review the important area of calcium phosphate-based biomaterials, namely, composites of hydroxyapatite with carbon-based materials. The scientific papers contained in this Special Issue report on advances in the areas of dental-based materials science, bone cements, use of biomaterials created from natural sources, influences of added agents such as adipose stem cells and statins on bioactivity as well as surface influences on electrical potential of biomaterials and uses of glow discharge methods to remove impurities from biomaterial surfaces.