New Developments in Nanosensors for Pharmaceutical Analysis


Book Description

New Developments for Nanosensors in Pharmaceutical Analysis presents an overview of developments in nanosensor usage in pharmaceutical analysis, thereby helping pharmaceutical companies attain reliable, precise, and accurate analysis of pharmaceuticals. This book presents very simple, precise, sensitive, selective, fast, and relatively inexpensive methods for pre-treatment, prior to analysis. These methods may be considered for further application in clinical studies and assays. The book includes the manufacturing of sensors for pharmaceutical analysis at nano- or smaller scales, and gives simple and relatable designs for the fabrication of sensors. Twelve chapters cover an introduction to the topic, immobilization techniques, mechanism effect of nanomaterials on structure, optical nanosensors for pharmaceutical detection, chemical nanosensors in pharmaceutical analysis, noble metal nanoparticles in electrochemical analysis of drugs, photo-electrochemical nanosensors for drug analysis, molecularly imprinted polymer based nanosensors for pharmaceutical analysis, nanomaterials for drug delivery systems, nanomaterials enriched nucleic acid-based biosensors, nanosensors in biomarker detection, and nanomaterials-based enzyme biosensors for electrochemical applications. - Presents nanosensor types, synthesis, immobilizations and applications in different fields - Gives simple repeatable designs for the fabrication of sensors for pharmaceutical analysis - Details how to carry out sensitive analysis of pharmaceuticals using nanosensors - Describes how to synthesize and immobilize nanosensors, and how nanosensors can be applied in drug assay - Proposes innovative ways to optimize pharmaceutical processes with nanosensors




Recent Advances in Therapeutic Drug Monitoring and Clinical Toxicology


Book Description

This book gives an overview of therapeutic drug monitoring (TDM) and its clinical application. It also highlights recent advances in toxicological studies, as they relate to therapeutic drug monitoring. This is one of the few books available on the market that covers TDM. Therapeutic drug monitoring (TDM) is a clinical decision-making tool that enables dosage regimen adjustments based on clinical and laboratory measurements. TDM not only involves the measuring of drug concentrations but also interpretation of the results. There is a strong correlation between drug concentrations in body fluids and outcome than between dose and outcome. The chapters include coverage of analytical techniques, pharmacokinetics, therapeutic indices, artificial intelligence and recent advances in toxicological studies. The book fills a gap in published literature and provides reliable information on; Analytical techniques in TDM and clinical toxicology TDM and pharmacokinetic studies TDM of drugs with narrow therapeutic indices Artificial intelligence in TDM and clinical toxicology Future directions and challenges




Drug Targets in Cellular Processes of Cancer: From Nonclinical to Preclinical Models


Book Description

This book explores potential cellular drug targets for cancer therapy. The first couple of chapters describe conventional treatment (radiotherapy, chemotherapy, and immunotherapy) & detection (biosensors) strategies for cancer. In contrast, the subsequent chapters address the role of cyclin-dependent kinases and cell cycle regulatory proteins in the growth of cancer cells and their potential as target for cancer treatment. The book then discusses the regulation of various pro-apoptotic and anti-apoptotic proteins via chemotherapeutic drugs. In addition, it examines the molecular mechanisms that are critical for mediating autophagic cell death in cancer cells. It subsequently reviews the role of reactive oxygen (ROS) species during carcinogenesis and during chemotherapy, and the potential of anti-inflammatory routes for the development of new therapeutic modulators. Lastly, it describes therapeutic strategies that target the tumor microenvironment and various angiogenic pathways for the treatment of cancer and to develop personalized medicine. Given its scope, the book is valuable resource for oncologists, cancer researchers, clinicians, and pharmaceutical industry personnel.







Nanosensors for Smart Manufacturing


Book Description

Nanosensors for Smart Manufacturing provides information on the fundamental design concepts and emerging applications of nanosensors in smart manufacturing processes. In smart production, if the products and machines are integrated, embedded, or equipped with sensors, the system can immediately collect the current operating parameters, predict the product quality, and then feed back the optimal parameters to machines in the production line. In this regard, smart sensors and their wireless networks are important components of smart manufacturing. Nanomaterials-based sensors (nanosensors) offer several advantages over their microscale counterparts, including lower power consumption, fast response time, high sensitivity, lower concentration of analytes, and smaller interaction distance between sensors and products. With the support of artificial intelligence (AI) tools such as fuzzy logic, genetic algorithms, neural networks, and ambient intelligence, sensor systems have become smarter. This is an important reference source for materials scientists and engineers who want to learn more about how nanoscale sensors can enhance smart manufacturing techniques and processes. - Outlines the smart nanosensor classes used in manufacturing applications - Shows how nanosensors are being used to make more efficient manufacturing systems - Assesses the major obstacles to designing nanosensor-based manufacturing systems at an industrial scale




Advanced Sensor Technology


Book Description

Advanced Sensor Technology: Biomedical, Environmental, and Construction Applications introduces readers to the past, present and future of sensor technology and its emerging applications in a wide variety of different fields. Organized in five parts, the book covers historical context and future outlook of sensor technology development and emerging applications, the use of sensors throughout many applications in healthcare, health and life science research, public health and safety, discusses chemical sensors used in environmental monitoring and remediation of contaminants, highlights the use of sensors in food, agriculture, fire prevention, automotive and robotics, and more. Final sections look forward at the challenges that must be overcome in the development and use of sensing technology as well as their commercial use, making this book appropriate for the interdisciplinary community of researchers and practitioners interested in the development of sensor technologies. - Covers a range of environmental applications such as protection and improvement of water, air, soil, plants, and agriculture and food production; biomedical applications including detection of viruses, genes, hormones, proteins, bacteria, and cancer, and applications in construction such as fire protection, automotive, robotics, food packing and micro-machining - Provides an outlook on opportunities and challenges for the fabrication and manufacturing of sensors in industry and their applicability for industrial uses - Demonstrates how cutting-edge developments in sensing technology translate into real-world innovations in a range of industry sectors




Technology in Forensic Science


Book Description

The book "Technology in Forensic Science" provides an integrated approach by reviewing the usage of modern forensic tools as well as the methods for interpretation of the results. Starting with best practices on sample taking, the book then reviews analytical methods such as high-resolution microscopy and chromatography, biometric approaches, and advanced sensor technology as well as emerging technologies such as nanotechnology and taggant technology. It concludes with an outlook to emerging methods such as AI-based approaches to forensic investigations.




Nanomaterials-Based Electrochemical Sensors: Properties, Applications, and Recent Advances


Book Description

As opposed to conventional electrochemical sensors, nanomaterials-based sensors are active and effective in their action with even a minute concentration of analyte. A number of research studies are bringing about an evolution in their development and advancement because of their unique and effective properties. Nanoscale electrochemical sensors have applications in almost every field of life including the detection of neurochemicals, heavy metals, energy components, body fluids, biological matrices, cancer relevant biomolecules, aromatic hydrocarbons, also in playing their role in food science because of their capability in providing quality control and safety. There is a need to develop these nanomaterials-based electrochemical sensors to be more widely available for accurate sensing of minute concentrations especially in the case of heavy metal detection, biofluids, and other biomaterials. This book outlines the major preparation, fabrication and manufacture of nanomaterials-based electrochemical sensors, as well as detailing their principle medical, environmental and industrial applications in an effort to meet this need.This book is a valuable reference source for materials scientists, engineers, electrochemists, environmental engineers and biomedical engineers who want to understand how nanomaterials-based electrochemical sensors are made, and how they are used. - Explains the techniques used for the fabrication and manufacture of nanomaterials-based electrochemical sensors - Discusses the major applications of nanomaterials-based electrochemical sensors in biomedicine and environmental science - Assesses the potential toxicity and other challenges associated with using nanomaterials-based electrochemical sensors




Fundamentals of Sensor Technology


Book Description

Fundamentals of Sensor Technology: Principles and Novel Designs presents an important reference on the materials, platforms, characterization and fabrication methods used in the development of chemical sensor technologies. Sections provide the historical context of sensor technology development, review principles for the design of sensing devices and circuits, delve into the most common chemical and biological sensor types, cover unique properties and performance requirements, discuss fabrication techniques, including defining critical parameters, modeling and simulation strategies, and present important materials categories used in sensing applications, such as nanomaterials, quantum dots, magnetic materials, and more.This book is appropriate for the interdisciplinary community of researchers and practitioners interested in the development of sensor technologies, including materials scientists and engineers, analytical chemists and other related disciplines. - Provides a comprehensive view of the latest advances in the design of chemical sensor materials, devices, and platforms - Reviews the most relevant nanosensor fabrication techniques for each sensor type, including critical parameters, modeling, simulation strategies and characterization methods - Discusses enhancement strategies for materials and devices to help improve physical, chemical and biological properties and enable practical applications




Systems of Nanovesicular Drug Delivery


Book Description

Systems of Nanovesicular Drug Delivery provides a thorough insight into the complete and up-to-date discussions about the preparation, properties and drug delivery applications of various nanovesicles. This volume discusses cubosomes, proniosomes and niosomes, dendrimerosomes and other new and effective approaches for drug delivery. It will be a valuable title and resource for academics and pharmaceutical scientists, including industrial pharmacists, analytical scientists, health care professionals and regulatory scientists actively involved in pharmaceutical products and process development of tailor-made polysaccharides in drug delivery applications. Recently, there have been a number of outstanding nanosystems in nanovesicular carrier-forms (such as nanoemulsions, self-nanoemulsifying systems, nanoliposomes, nanotransferosomes, etc.), that have been researched and developed for efficient drug delivery by many formulators, researchers and scientists. However, no previously published books have covered all these drug delivery nanovesicles collectively in a single resource. - Provides thorough insights and up-to-date discussions about the various systems of nanovesicular drug delivery - Covers advanced trigger-assisted systems (such as iontophoresis, ultra-sound triggering, etc.) and how they have been used for improved drug delivery by nanovesicles - Presents recent advances in drug delivery fields by global leaders and experts from academia, research, industry and regulatory agencies - Includes an updated literature review of relevant key topics, good quality illustrations, chemical structures, attractive flow charts and well-organized tables