New Directions in Hopf Algebras


Book Description

Hopf algebras have important connections to quantum theory, Lie algebras, knot and braid theory, operator algebras and other areas of physics and mathematics. They have been intensely studied in the past; in particular, the solution of a number of conjectures of Kaplansky from the 1970s has led to progress on the classification of semisimple Hopf algebras and on the structure of pointed Hopf algebras. Among the topics covered are results toward the classification of finite-dimensional Hopf algebras (semisimple and non-semisimple), as well as what is known about the extension theory of Hopf algebras. Some papers consider Hopf versions of classical topics, such as the Brauer group, while others are closer to work in quantum groups. The book also explores the connections and applications of Hopf algebras to other fields.




Hopf Algebras


Book Description

The book provides a detailed account of basic coalgebra and Hopf algebra theory with emphasis on Hopf algebras which are pointed, semisimple, quasitriangular, or are of certain other quantum groups. It is intended to be a graduate text as well as a research monograph.




Hopf Algebras


Book Description

This volume publishes key proceedings from the recent International Conference on Hopf Algebras held at DePaul University, Chicago, Illinois. With contributions from leading researchers in the field, this collection deals with current topics ranging from categories of infinitesimal Hopf modules and bimodules to the construction of a Hopf algebraic Morita invariant. It uses the newly introduced theory of bi-Frobenius algebras to investigate a notion of group-like algebras and summarizes results on the classification of Hopf algebras of dimension pq. It also explores pre-Lie, dendriform, and Nichols algebras and discusses support cones for infinitesimal group schemes.




Topology, Geometry, and Algebra: Interactions and new directions


Book Description

This volume presents the proceedings from the conference on ``Topology, Geometry, and Algebra: Interactions and New Directions'' held in honor of R. James Milgram at Stanford University in August 1999. The meeting brought together distinguished researchers from a variety of areas related to algebraic topology and its applications. Papers in the book present a wide range of subjects, reflecting the nature of the conference. Topics include moduli spaces, configuration spaces, surgerytheory, homotopy theory, knot theory, group actions, and more. Particular emphasis was given to the breadth of interaction between the different areas.




Hopf Algebras and Generalizations


Book Description

Hopf algebras have proved to be very interesting structures with deep connections to various areas of mathematics, particularly through quantum groups. Indeed, the study of Hopf algebras, their representations, their generalizations, and the categories related to all these objects has an interdisciplinary nature. It finds methods, relationships, motivations and applications throughout algebra, category theory, topology, geometry, quantum field theory, quantum gravity, and also combinatorics, logic, and theoretical computer science. This volume portrays the vitality of contemporary research in Hopf algebras. Altogether, the articles in the volume explore essential aspects of Hopf algebras and some of their best-known generalizations by means of a variety of approaches and perspectives. They make use of quite different techniques that are already consolidated in the area of quantum algebra. This volume demonstrates the diversity and richness of its subject. Most of its papers introduce the reader to their respective contexts and structures through very expository preliminary sections.




Hopf Algebras, Tensor Categories and Related Topics


Book Description

The articles highlight the latest advances and further research directions in a variety of subjects related to tensor categories and Hopf algebras. Primary topics discussed in the text include the classification of Hopf algebras, structures and actions of Hopf algebras, algebraic supergroups, representations of quantum groups, quasi-quantum groups, algebras in tensor categories, and the construction method of fusion categories.




Hopf Algebras and Their Generalizations from a Category Theoretical Point of View


Book Description

These lecture notes provide a self-contained introduction to a wide range of generalizations of Hopf algebras. Multiplication of their modules is described by replacing the category of vector spaces with more general monoidal categories, thereby extending the range of applications. Since Sweedler's work in the 1960s, Hopf algebras have earned a noble place in the garden of mathematical structures. Their use is well accepted in fundamental areas such as algebraic geometry, representation theory, algebraic topology, and combinatorics. Now, similar to having moved from groups to groupoids, it is becoming clear that generalizations of Hopf algebras must also be considered. This book offers a unified description of Hopf algebras and their generalizations from a category theoretical point of view. The author applies the theory of liftings to Eilenberg–Moore categories to translate the axioms of each considered variant of a bialgebra (or Hopf algebra) to a bimonad (or Hopf monad) structure on a suitable functor. Covered structures include bialgebroids over arbitrary algebras, in particular weak bialgebras, and bimonoids in duoidal categories, such as bialgebras over commutative rings, semi-Hopf group algebras, small categories, and categories enriched in coalgebras. Graduate students and researchers in algebra and category theory will find this book particularly useful. Including a wide range of illustrative examples, numerous exercises, and completely worked solutions, it is suitable for self-study.




New Developments in Lie Theory and Its Applications


Book Description

Focuses on representation theory, harmonic analysis in Lie groups, and mathematical physics related to Lie theory. The papers give a broad overview of these subjects and also of the recent developments in research.




Hopf Algebras in Noncommutative Geometry and Physics


Book Description

This comprehensive reference summarizes the proceedings and keynote presentations from a recent conference held in Brussels, Belgium. Offering 1155 display equations, this volume contains original research and survey papers as well as contributions from world-renowned algebraists. It focuses on new results in classical Hopf algebras as well as the




New Developments in Lie Theory and Geometry


Book Description

This volume is an outgrowth of the Sixth Workshop on Lie Theory and Geometry, held in the province of Cordoba, Argentina in November 2007. The representation theory and structure theory of Lie groups play a pervasive role throughout mathematics and physics. Lie groups are tightly intertwined with geometry and each stimulates developments in the other. The aim of this volume is to bring to a larger audience the mutually beneficial interaction between Lie theorists and geometers that animated the workshop. Two prominent themes of the representation theoretic articles are Gelfand pairs and the representation theory of real reductive Lie groups. Among the more geometric articles are an exposition of major recent developments on noncompact homogeneous Einstein manifolds and aspects of inverse spectral geometry presented in settings accessible to readers new to the area.