New Era of Bioenergetics


Book Description

This book provides the latest references for scientists in bioenergetics and related fields. It also offers a reliable guideline to students who are interested in joining this field of the life sciences.




Bioenergetics 2


Book Description

Bioenergetics 2 aims to clarify topics such as the thermodynamics of bioenergetic processes and the stoichiometries of energy coupling reactions. The book discusses chemiosmotic energy transduction; ion transport across energy-conserving membranes; and quantitative bioenergenetics as the measurement of driving forces. The text also describes the chemiosmotic proton circuit; the respiratory chain; the photosynthetic generators of protonmotive force; and the ATP synthase. The secondary transport of products across the membrane, as well as the structures of the bacterial photosynthetic reaction center and bacteriorhodopsin are also considered. Biochemists will find the book invaluable.




Dynamic Energy and Mass Budgets in Biological Systems


Book Description

The Dynamic Energy Budget theory unifies the commonalties between organisms, as prescribed by the implications of energetics, and links different levels of biological organisation (cells, organisms and populations). The theory presents simple mechanistic rules that describe the uptake and use of energy and nutrients and the consequences for physiological organization throughout an organism's life cycle. All living organisms are covered in a single quantitative framework, the predictions of which are tested against a variety of experimental results at a range of levels of organisation. The theory explains many general observations, such as the body size scaling relationships of certain physiological traits, and provides a theoretical underpinning to the method of indirect calorimetry. In each case, the theory is developed in elementary mathematical terms, but a more detailed discussion of the methodological aspects of mathematical modelling is also included.




Bioenergetics


Book Description

Bioenergetics deals with the very first energy transformation steps performed by living cells. Increased dissipation is the primary effect of processing external energy packages. Enzyme-supported charge separation is the minor but essential outcome for maintaining life. This book explores the usefulness of dissecting the entropy production of enzymes involved in cellular defenses, fermentation, respiration, and photosynthesis, assuming that tightly regulated dissipation is the hallmark of life. Researchers, educators, and students of life sciences can find in this text many examples of how we can use the interdisciplinary approach to study cells' virtuoso ability to connect the microscopic to the macroscopic world. Each chapter is a self-contained unit with a glossary and selected references for further reading.




Biochemistry: Fundamentals and Bioenergetics


Book Description

Biochemistry: Fundamentals and Bioenergetics presents information about the basic and applied aspects of the chemistry of living organisms. The textbook covers the scope and importance of biochemistry, the latest physical techniques to determine biomolecular structure, detailed classification, structure and function of biomolecules such as carbohydrates, lipids, amino acids, proteins, nucleic acids, vitamins, enzymes and hormones. Readers will also learn about processes central to energy metabolism including photosynthesis and respiration, oxidative phosphorylation, DNA replication, transcription and translation, recombinant DNA technology. Key Features - logical approach to biochemistry with several examples - 10 organized chapters on biochemistry fundamentals and metabolism - focus on biomolecules and biochemical processes - references for further reading




Biological Thermodynamics


Book Description

This inter-disciplinary guide to the thermodynamics of living organisms has been thoroughly revised and updated to provide a uniquely integrated overview of the subject. Retaining its highly readable style, it will serve as an introduction to the study of energy transformation in the life sciences and particularly as an accessible means for biology, biochemistry and bioengineering undergraduate students to acquaint themselves with the physical dimension of their subject. The emphasis throughout the text is on understanding basic concepts and developing problem-solving skills. The mathematical difficulty increases gradually by chapter, but no calculus is required. Topics covered include energy and its transformation, the First Law of Thermodynamics, Gibbs free energy, statistical thermodynamics, binding equilibria and reaction kinetics. Each chapter comprises numerous illustrative examples taken from different areas of biochemistry, as well as a broad range of exercises and references for further study.




Thermodynamics in Bioenergetics


Book Description

Thermodynamics in Bioenergetics aims to supply students with the knowledge and understanding of the critical concepts and theories that are needed in the biochemistry and bioenergetics fields. Biochemical reactions highlighting thermodynamics, chemical kinetics, and enzymes are addressed in the text. Author, Jean-Louis Burgot, guides the reader through the starting points, strategy description, and theory results to facilitate their comprehension of the theories and examples being discussed in the book. Also discussed in the text are the notions of Gibbs energy, entropy, and exergonic and endergonic reactions.




Nobel Laureates in Medicine or Physiology


Book Description

Originally published in 1990, Nobel Laureates in Medicine or Physiology is a biographical reference work about the recipients of Nobel Prizes in Medicine or Physiology from 1901-1989. Each article is written by an accomplished historian of medicine or science. The book is designed to be accessible to students and general readers as well as to specialists in medical science and history. Each article combines personal and scientific biography, and each has an extensive biography to guide further reading and research.




Bioenergetics of the Cell: Quantitative Aspects


Book Description

This volume continues the discussion of the problems of in vivo and in vitro. The recently solved X-ray structure of the mitochondrial creatine kinase and its molecular biology cellular bioenergetics - the tradition we started in 1994 by publication of the focused issue of Molecular and Cellular are analyzed with respect to its molecular physiology and Biochemistry, volume 133/134 and a book 'Cellular Bio functional coupling to the adenine nucleotide translocase, as energetics: role of coupled creatine kinases' edited by V. Saks well as its participation, together with the adenylate kinase and R. Ventura-Clapier and published by Kluwer Publishers, system, in intracellular energy transfer. The results of the Dordrecht -Boston. In the present volume, use of quantitative studies of creatine kinase deficient transgenic mice are methods of studies of organized metabolic systems, such as summarized and analyzed by using mathematical models of mathematical modeling and Metabolic Control Analysis, for the compartmentalized energy transfer, thus combining two investigation of the problems of bioenergetics of the cell is powerful new methods of the research. All these results, described together with presentation of new experimental together with the physiological and NMR data on the cardiac results. The following central problems of the cellular bio metabolic and mitochondrial responses to work-load changes energetics are the focus of the discussions: the mechanisms concord to the concept of metabolic networks of energy of regulation of oxidative phosphorylation in the cells in vivo transfer and feedback regulation.




Bioenergetics


Book Description

Bioenergetics, the topic of volume 5 of this Series, is concerned with the energetics, the kinetics, and the mechanisms of energy conversion in biological systems. This phenomenon can be investigated on diffe rent levels of complexity. On a global level the role of biological pro cesses for the steady state of our enviroment is considered. At the physiological level, the relation between energy input and the physiolo gical state of an organism is of interest, while at the cellular level the biochemical pathways for degradation and synthesis of all relevant substrates is investigated. At present the majority of bioenergetic stu dies pertain to the molecular level. The processes in a cell are cataly zed by a large number of proteins called enzymes. The enzymes in volved in energy transduction can be considered as molecular ma chines which transform energy from one form into another, or transfer energy from one process to another. Living systems operate far from equilibrium and are open in the ther modynamic sense, i. e. they exchange energy and matter with the sur roundings. Chapter 1 presents the principles of non equilibrium thermo dynamics applied to biological systems. About 0. 05% of the energy from the sunlight which reaches the surface of the earth is used by plants and algae as well as some bacteria to synthesize organic com pounds, and thus supplies all organisms with the energy necessary for life.