New Horizons of Parallel and Distributed Computing


Book Description

Parallel and distributed computing is one of the foremost technologies for shaping future research and development activities in academia and industry. Hyperthreading in Intel processors, hypertransport links in next generation AMD processors, multicore silicon in today’s high-end microprocessors, and emerging cluster and grid computing have moved parallel/distributed computing into the mainstream of computing. New Horizons of Parallel and Distributed Computing is a collection of self-contained chapters written by pioneering researchers to provide solutions for newly emerging problems in this field. This volume will not only provide novel ideas, work in progress and state-of-the-art techniques in the field, but will also stimulate future research activities in the area of parallel and distributed computing with applications. New Horizons of Parallel and Distributed Computing is intended for industry researchers and developers, as well as for academic researchers and advanced-level students in computer science and electrical engineering. A valuable reference work, it is also suitable as a textbook.




Distributed Computing


Book Description

Designing distributed computing systems is a complex process requiring a solid understanding of the design problems and the theoretical and practical aspects of their solutions. This comprehensive textbook covers the fundamental principles and models underlying the theory, algorithms and systems aspects of distributed computing. Broad and detailed coverage of the theory is balanced with practical systems-related issues such as mutual exclusion, deadlock detection, authentication, and failure recovery. Algorithms are carefully selected, lucidly presented, and described without complex proofs. Simple explanations and illustrations are used to elucidate the algorithms. Important emerging topics such as peer-to-peer networks and network security are also considered. With vital algorithms, numerous illustrations, examples and homework problems, this textbook is suitable for advanced undergraduate and graduate students of electrical and computer engineering and computer science. Practitioners in data networking and sensor networks will also find this a valuable resource. Additional resources are available online at www.cambridge.org/9780521876346.




New Horizons of Computational Science


Book Description

Proceedings of the International Symposium on Supercomputing held in Tokyo, Japan, September 1-3, 1997




Analytical Modelling in Parallel and Distributed Computing


Book Description

This publication examines complex performance evaluation of various typical parallel algorithms (shared memory, distributed memory) and their practical implementations. As real application examples we demonstrate the various influences during the process of modelling and performance evaluation and the consequences of their distributed parallel implementations.




Topics in Parallel and Distributed Computing


Book Description

Topics in Parallel and Distributed Computing provides resources and guidance for those learning PDC as well as those teaching students new to the discipline. The pervasiveness of computing devices containing multicore CPUs and GPUs, including home and office PCs, laptops, and mobile devices, is making even common users dependent on parallel processing. Certainly, it is no longer sufficient for even basic programmers to acquire only the traditional sequential programming skills. The preceding trends point to the need for imparting a broad-based skill set in PDC technology. However, the rapid changes in computing hardware platforms and devices, languages, supporting programming environments, and research advances, poses a challenge both for newcomers and seasoned computer scientists. This edited collection has been developed over the past several years in conjunction with the IEEE technical committee on parallel processing (TCPP), which held several workshops and discussions on learning parallel computing and integrating parallel concepts into courses throughout computer science curricula. - Contributed and developed by the leading minds in parallel computing research and instruction - Provides resources and guidance for those learning PDC as well as those teaching students new to the discipline - Succinctly addresses a range of parallel and distributed computing topics - Pedagogically designed to ensure understanding by experienced engineers and newcomers - Developed over the past several years in conjunction with the IEEE technical committee on parallel processing (TCPP), which held several workshops and discussions on learning parallel computing and integrating parallel concepts




Distributed and Parallel Systems


Book Description

Distributed and Parallel Systems: From Cluster to Grid Computing, is an edited volume based on DAPSYS 2006, the 6th Austrian-Hungarian Workshop on Distributed and Parallel Systems, which is dedicated to all aspects of distributed and parallel computing. The workshop was held in conjunction with the 2nd Austrian Grid Symposium in Innsbruck, Austria in September 2006. This book is designed for a professional audience composed of practitioners and researchers in industry. It is also suitable for advanced-level students in computer science.




Parallel Programming, Models and Applications in Grid and P2P Systems


Book Description

Presents advances for grid and P2P paradigms, middleware, programming models, communication libraries, as well as their application to the resolution of real-life problems. This book is suitable for academics, scientists, software developers and engineers interested in the grid and P2P paradigms.




High Performance Computing and Communications


Book Description

This book constitutes the refereed proceedings of the Third International Conference on High Performance Computing and Communications, HPCC 2007, held in Houston, USA, September 26-28, 2007. The 75 revised full papers presented were carefully reviewed and selected from 272 submissions. The papers address all current issues of parallel and distributed systems and high performance computing and communication as there are: networking protocols, routing, and algorithms, languages and compilers for HPC, parallel and distributed architectures and algorithms, embedded systems, wireless, mobile and pervasive computing, Web services and internet computing, peer-to-peer computing, grid and cluster computing, reliability, fault-tolerance, and security, performance evaluation and measurement, tools and environments for software development, distributed systems and applications, database applications and data mining, biological/molecular computing, collaborative and cooperative environments, and programming interfaces for parallel systems.




Designing Distributed Systems


Book Description

Without established design patterns to guide them, developers have had to build distributed systems from scratch, and most of these systems are very unique indeed. Today, the increasing use of containers has paved the way for core distributed system patterns and reusable containerized components. This practical guide presents a collection of repeatable, generic patterns to help make the development of reliable distributed systems far more approachable and efficient. Author Brendan Burns—Director of Engineering at Microsoft Azure—demonstrates how you can adapt existing software design patterns for designing and building reliable distributed applications. Systems engineers and application developers will learn how these long-established patterns provide a common language and framework for dramatically increasing the quality of your system. Understand how patterns and reusable components enable the rapid development of reliable distributed systems Use the side-car, adapter, and ambassador patterns to split your application into a group of containers on a single machine Explore loosely coupled multi-node distributed patterns for replication, scaling, and communication between the components Learn distributed system patterns for large-scale batch data processing covering work-queues, event-based processing, and coordinated workflows




Performance Analysis and Grid Computing


Book Description

Past and current research in computer performance analysis has focused primarily on dedicated parallel machines. However, future applications in the area of high-performance computing will not only use individual parallel systems but a large set of networked resources. This scenario of computational and data Grids is attracting a great deal of attention from both computer and computational scientists. In addition to the inherent complexity of parallel machines, the sharing and transparency of the available resources introduces new challenges on performance analysis, techniques, and systems. In order to meet those challenges, a multi-disciplinary approach to the multi-faceted problems of performance is required. New degrees of freedom will come into play with a direct impact on the performance of Grid computing, including wide-area network performance, quality-of-service (QoS), heterogeneity, and middleware systems, to mention only a few.