New Ideas In Low Dimensional Topology


Book Description

This book consists of a selection of articles devoted to new ideas and developments in low dimensional topology. Low dimensions refer to dimensions three and four for the topology of manifolds and their submanifolds. Thus we have papers related to both manifolds and to knotted submanifolds of dimension one in three (classical knot theory) and two in four (surfaces in four dimensional spaces). Some of the work involves virtual knot theory where the knots are abstractions of classical knots but can be represented by knots embedded in surfaces. This leads both to new interactions with classical topology and to new interactions with essential combinatorics.




Differential and Low-Dimensional Topology


Book Description

The new student in differential and low-dimensional topology is faced with a bewildering array of tools and loosely connected theories. This short book presents the essential parts of each, enabling the reader to become 'literate' in the field and begin research as quickly as possible. The only prerequisite assumed is an undergraduate algebraic topology course. The first half of the text reviews basic notions of differential topology and culminates with the classification of exotic seven-spheres. It then dives into dimension three and knot theory. There then follows an introduction to Heegaard Floer homology, a powerful collection of modern invariants of three- and four-manifolds, and of knots, that has not before appeared in an introductory textbook. The book concludes with a glimpse of four-manifold theory. Students will find it an exhilarating and authoritative guide to a broad swathe of the most important topics in modern topology.




Knots, Links, Braids and 3-manifolds


Book Description

This book is intended for researchers working in geometry and topology.




Topics In Low Dimensional Topology: In Honor Of Steve Armentrout - Proceedings Of The Conference On Low-dimensional Topology


Book Description

Recent success with the four-dimensional Poincaré conjecture has revived interest in low-dimensional topology, especially the three-dimensional Poincaré conjecture and other aspects of the problems of classifying three-dimensional manifolds. These problems have a driving force, and have generated a great body of research, as well as insight.The main topics treated in this book include a paper by V Poenaru on the Poincaré conjecture and its ramifications, giving an insight into the herculean work of the author on the subject. Steve Armentrout's paper on “Bing's dogbone space” belongs to the topics in three-dimensional topology motivated by the Poincaré conjecture. S Singh gives a nice synthesis of Armentrout's work. Also included in the volume are shorter original papers, dealing with somewhat different aspects of geometry, and dedicated to Armentrout by his colleagues — Augustin Banyaga (and Jean-Pierre Ezin), David Hurtubise, Hossein Movahedi-Lankarani and Robert Wells.




Low Dimensional Topology


Book Description

Low-dimensional topology has long been a fertile area for the interaction of many different disciplines of mathematics, including differential geometry, hyperbolic geometry, combinatorics, representation theory, global analysis, classical mechanics, and theoretical physics. The Park City Mathematics Institute summer school in 2006 explored in depth the most exciting recent aspects of this interaction, aimed at a broad audience of both graduate students and researchers. The present volume is based on lectures presented at the summer school on low-dimensional topology. These notes give fresh, concise, and high-level introductions to these developments, often with new arguments not found elsewhere. The volume will be of use both to graduate students seeking to enter the field of low-dimensional topology and to senior researchers wishing to keep up with current developments. The volume begins with notes based on a special lecture by John Milnor about the history of the topology of manifolds. It also contains notes from lectures by Cameron Gordon on the basics of three-manifold topology and surgery problems, Mikhail Khovanov on his homological invariants for knots, John Etnyre on contact geometry, Ron Fintushel and Ron Stern on constructions of exotic four-manifolds, David Gabai on the hyperbolic geometry and the ending lamination theorem, Zoltan Szabo on Heegaard Floer homology for knots and three manifolds, and John Morgan on Hamilton's and Perelman's work on Ricci flow and geometrization.




Intelligence of Low Dimensional Topology 2006


Book Description

This volume gathers the contributions from the international conference Intelligence of Low Dimensional Topology 2006, which took place in Hiroshima in 2006. The aim of this volume is to promote research in low dimensional topology with the focus on knot theory and related topics. The papers include comprehensive reviews and some latest results.




Knots, Links, Braids And 3-Manifolds


Book Description




Knots, Low-Dimensional Topology and Applications


Book Description

This proceedings volume presents a diverse collection of high-quality, state-of-the-art research and survey articles written by top experts in low-dimensional topology and its applications. The focal topics include the wide range of historical and contemporary invariants of knots and links and related topics such as three- and four-dimensional manifolds, braids, virtual knot theory, quantum invariants, braids, skein modules and knot algebras, link homology, quandles and their homology; hyperbolic knots and geometric structures of three-dimensional manifolds; the mechanism of topological surgery in physical processes, knots in Nature in the sense of physical knots with applications to polymers, DNA enzyme mechanisms, and protein structure and function. The contents is based on contributions presented at the International Conference on Knots, Low-Dimensional Topology and Applications – Knots in Hellas 2016, which was held at the International Olympic Academy in Greece in July 2016. The goal of the international conference was to promote the exchange of methods and ideas across disciplines and generations, from graduate students to senior researchers, and to explore fundamental research problems in the broad fields of knot theory and low-dimensional topology. This book will benefit all researchers who wish to take their research in new directions, to learn about new tools and methods, and to discover relevant and recent literature for future study.




Low Dimensional Topology


Book Description




Low Dimensional Topology


Book Description