New Insights on the Development of the Vascular System


Book Description

New Insights on the Development of the Vascular System examines the most recent literature and data on the development of the vascular system, along with advice on new laboratory techniques and approaches to data analysis. This volume is a comprehensive handbook to the state-of-the-art in vascular system development. Several genetic and epigenetic mechanisms are involved in the early development of the vascular system, and there is extensive literature on the genetic background and molecular mechanisms responsible for blood vessel formation. Yet new data and techniques have been developed in recent years. Although scientific literature covers the descriptive aspects of embryonic vascular system development, modern techniques such as the technology of cell fusion, cell sorting and image analysis give new insight into the mechanisms by which vessels form and regress and how blood flow changes directions in the same vessels. - Gives a comprehensive overview of the most recent literature in the field of vascular system development - Presents new data, including sections on endothelial cell signaling and technologies of cell fusion, cell sorting and image analysis - Provides useful insights on the analysis of new experimental work - Suggests modern techniques for scientists to use in the lab - Gives an overview of vascular biology that will be useful for those needing rapid familiarity - Provides an expert guide to the state-of-the-art in vascular system development as written by a leader in the field




Early Vascular Aging (EVA)


Book Description

Early Vascular Aging (EVA): New Directions in Cardiovascular Protection, Second Edition continues to be the most comprehensive and authoritative resource on premature alterations in artery structure and function. The book presents a novel approach to the problem of cardiovascular disease, showing it in relation to great vessels disease and revealing a comprehensive approach to the problem of increased rigidity of the great vessels, its causes, and further consequences. This second edition contains completely updated content with expanded coverage of basic and translational research, systematic reviews of the most prominent literature, discussion of applicability of new evidence and more. Written by an international team of clinicians and researchers, this is a valuable resource to basic and translational scientists, clinical researchers and clinicians in the cardiovascular field interested in prevention, diagnosis and treatment of EVA. - Contains all the relevant information available on the main paradigm shifts in vascular aging research, from different fields of knowledge (from basic biology to epidemiology) - Reviews the most prominent evidence produced on early vascular aging (EVA), highlighting recent research advances, clinical applications, and research opportunities - Formulates, in each chapter, a set of research questions that need to be addressed, challenging the vast research community to take on new directions and collaborations




Mechanisms of Vascular Disease


Book Description

New updated edition first published with Cambridge University Press. This new edition includes 29 chapters on topics as diverse as pathophysiology of atherosclerosis, vascular haemodynamics, haemostasis, thrombophilia and post-amputation pain syndromes.




Regulation of Tissue Oxygenation, Second Edition


Book Description

This presentation describes various aspects of the regulation of tissue oxygenation, including the roles of the circulatory system, respiratory system, and blood, the carrier of oxygen within these components of the cardiorespiratory system. The respiratory system takes oxygen from the atmosphere and transports it by diffusion from the air in the alveoli to the blood flowing through the pulmonary capillaries. The cardiovascular system then moves the oxygenated blood from the heart to the microcirculation of the various organs by convection, where oxygen is released from hemoglobin in the red blood cells and moves to the parenchymal cells of each tissue by diffusion. Oxygen that has diffused into cells is then utilized in the mitochondria to produce adenosine triphosphate (ATP), the energy currency of all cells. The mitochondria are able to produce ATP until the oxygen tension or PO2 on the cell surface falls to a critical level of about 4–5 mm Hg. Thus, in order to meet the energetic needs of cells, it is important to maintain a continuous supply of oxygen to the mitochondria at or above the critical PO2 . In order to accomplish this desired outcome, the cardiorespiratory system, including the blood, must be capable of regulation to ensure survival of all tissues under a wide range of circumstances. The purpose of this presentation is to provide basic information about the operation and regulation of the cardiovascular and respiratory systems, as well as the properties of the blood and parenchymal cells, so that a fundamental understanding of the regulation of tissue oxygenation is achieved.




The Primo Vascular System


Book Description

Proceedings from the first International Symposium on Primo Vascular System 2010 (ISPS 2010) with special topics on cancer and regeneration was held in Jecheon, Korea during September 17-18, 2010. Includes coverage of new study results that have better revealed the functional aspects of PVS, including its roles in the areas of regenerative medicine and cancer.




Hematopoiesis: New Insights for the Healthcare Professional: 2013 Edition


Book Description

Hematopoiesis: New Insights for the Healthcare Professional: 2013 Edition is a ScholarlyBrief™ that delivers timely, authoritative, comprehensive, and specialized information about Additional Research in a concise format. The editors have built Hematopoiesis: New Insights for the Healthcare Professional: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Additional Research in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Hematopoiesis: New Insights for the Healthcare Professional: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.




The Neuropilins: Role and Function in Health and Disease


Book Description

This book covers basic research topics such as the structure-function relationships of neuropilins and mechanisms of neuropilin-mediated signal transduction, details the most important roles of the neuropilins in developmental biology, and addresses their roles in various conditions such as cancer and various eye diseases. The two neuropilin genes encode scaffold receptors that can bind several different ligands, and also associate with many other receptors and modify their activity. Further, it has been confirmed that they play important roles in the shaping of major organs and tissues such as the nervous system and the vascular system, and that they can modulate immune responses. The book offers a helpful guide for biomedical researchers and all scientists active in the neurosciences, vascular and molecular biology, as well as developmental biology and immunology.




Vascular Development


Book Description

The formation of blood vessels is an essential aspect of embryogenesis in vertebrates. It is a central feature of numerous post-embryonic processes, including tissue and organ growth and regeneration. It is also part of the pathology of tumour formation and certain inflammatory conditions. In recent years, comprehension of the molecular genetics of blood vessel formation has progressed enormously and studies in vertebrate model systems, especially the mouse and the zebrafish, have identified a common set of molecules and processes that are conserved throughout vertebrate embryogenesis while, in addition, highlighting aspects that may differ between different animal groups. The discovery in the past decade of the crucial role of new blood vessel formation for the development of cancers has generated great interest in angiogenesis (the formation of new blood vessels from pre-existing ones), with its major implications for potential cancer-control strategies. In addition, there are numerous situations where therapeutic treatments either require or would be assisted by vasculogenesis (the de novo formation of blood vessels). In particular, post-stroke therapies could include treatments that stimulate neovascularization of the affected tissues. The development of such treatments, however, requires thoroughly understanding the developmental properties of endothelial cells and the basic biology of blood vessel formation. While there are many books on angiogenesis, this unique book focuses on exactly this basic biology and explores blood vessel formation in connection with tissue development in a range of animal models. It includes detailed discussions of relevant cell biology, genetics and embryogenesis of blood vessel formation and presents insights into the cross-talk between developing blood vessels and other tissues. With contributions from vascular biologists, cell biologists and developmental biologists, a comprehensive and highly interdisciplinary volume is the outcome.