New Methods for Polymer Synthesis


Book Description

The art and science of macromolecular architecture is based on synthesis, analysis, processing, and evaluation of physical properties of polymers. The growing specificity of available synthetic methods and the increasing refinement of analytical and physical analysis are gradually providing a deeper insight into structure-property relationships of polymers, upon which many applications can be based. This book deals with recent methods for polymer synthesis. Those that lead to specific structures have been selected especially. Background, mechanism scope and limitations, and illustrative procedures are given for each method. With this layout the editor hopes that the book will provide a practical guideline, for the synthetic polymer chemist in industry or at a university graduate school, on how to apply the methods in the design of new polymer structures. The editor is grateful to the authors not only for their contributions containing interesting new developments in polymer synthesis, but also for the way they have fitted their text into the general framework of the book. The elegant chemistry described in the following chapters will, it is hoped, inspire more organic chemists to apply their skills to polymer synthesis, where the beauty of organic chemistry in terms of structural control and reactivity may be even more apparent than in the low molecular field.




New Methods of Polymer Synthesis


Book Description

Most practitioners and students of polymer chemistry are familiar, in general terms at least, with the established methods of polymer synthesis - radical, anionic, cationic and coordination addition polymerization, and stepwise con densation and rearrangement polymerization. These methods are used to synthesize the majority of polymers used in the manufacture of commercially important plastics, fibres, resins and rubbers, and are covered in most introduc tory polymer chemistry textbooks and in most undergraduate and graduate courses on polymer science. Fewer polymer chemists, however, have much familiarity with more recent developments in methods of polymer synthesis, unless they have been specifically involved for some time in the synthesis of speciality polymers. These developments include not only refinements to established methods but also new mechanisms of polymerization, such as group transfer and metathesis polymerization and novel non-polymerization routes to speciality polymers involving, for example, the chemical modification of preformed polymers or the linking together of short terminally functionalized blocks.




New Methods Polymer Synthesis


Book Description

Most practitioners and students of polymer chemistry are familiar, in general terms at least, with the established methods of polymer synthesis - radical, anionic, cationic and coordination addition polymerization, and stepwise con densation and rearrangement polymerization. These methods are used to synthesize the majority of polymers used in the manufacture of commercially important plastics, fibres, resins and rubbers, and are covered in most introduc tory polymer chemistry textbooks and in most undergraduate and graduate courses on polymer science. Fewer polymer chemists, however, have much familiarity with more recent developments in methods of polymer synthesis, unless they have been specifically involved for some time in the synthesis of speciality polymers. These developments include not only refinements to established methods but also new mechanisms of polymerization, such as group transfer and metathesis polymerization and novel non-polymerization routes to speciality polymers involving, for example, the chemical modification of preformed polymers or the linking together of short terminally functionalized blocks.




Synthesis of Polymers


Book Description

Polymers are huge macromolecules composed of repeating structural units. While polymer in popular usage suggests plastic, the term actually refers to a large class of natural and synthetic materials. Due to the extraordinary range of properties accessible, polymers have come to play an essential and ubiquitous role in everyday life - from plastics and elastomers on the one hand to natural biopolymers such as DNA and proteins on the other hand. The study of polymer science begins with understanding the methods in which these materials are synthesized. Polymer synthesis is a complex procedure and can take place in a variety of ways. This book brings together the "Who is who" of polymer science to give the readers an overview of the large field of polymer synthesis. It is a one-stop reference and a must-have for all Chemists, Polymer Chemists, Chemists in Industry, and Materials Scientists.




New Methods of Polymer Synthesis


Book Description

Most practitioners and students of polymer chemistry are familiar, in general terms at least, with the established methods of polymer synthesis - radical, anionic, cationic and coordination addition polymerization, and stepwise con densation and rearrangement polymerization. These methods are used to synthesize the majority of polymers used in the manufacture of commercially important plastics, fibres, resins and rubbers, and are covered in most introduc tory polymer chemistry textbooks and in most undergraduate and graduate courses on polymer science. Fewer polymer chemists, however, have much familiarity with more recent developments in methods of polymer synthesis, unless they have been specifically involved for some time in the synthesis of speciality polymers. These developments include not only refinements to established methods but also new mechanisms of polymerization, such as group transfer and metathesis polymerization and novel non-polymerization routes to speciality polymers involving, for example, the chemical modification of preformed polymers or the linking together of short terminally functionalized blocks.







Polymer Synthesis


Book Description

1. T. Takata, N. Kihara, Y. Furusho: Polyrotaxanes and Polycatenanes: Recent Advances in Syntheses and Applications of Polymers Comprising of Interlocked Structures.- 2. M. Suginome, Y. Ito: Transition Metal-Mediated Polymerization of Isocyanides.- 3. K. Osakada, D. Takeuchi: Coordination Polymerization of Dienes, Allenes and Methylenecycloalkanes.




Polymer Synthesis: Theory and Practice


Book Description

The first English edition of this book was pubUshed in 1971 with the late Prof. Dr. Werner Kern as coauthor. In 1997, for the preparation of the third edition, Prof. Dr. Helmut Ritter joined the team of authors and in 2001 Prof. Dr. Brigitte Voit and Prof. Dr. Matthias Rehahn complemented this team. The change in authors has not altered the basic concept of this 4th edition: again we were not aimed at compiling a comprehensive collection of recipes. In stead, we attempted to reach a broader description of the general methods and techniques for the synthesis, modification, and characterization of macromo- cules, supplemented by 105 selected and detailed experiments and by sufficient theoretical treatment so that no additional textbook be needed in order to under stand the experiments. In addition to the preparative aspects we have also tried to give the reader an impression of the relation of chemical structure and mor phology of polymers to their properties, as well as of areas of their application.




Polymer Synthesis: Theory and Practice


Book Description

Containing detailed descriptions of the general methods and processes for the synthesis, modification and characterization of macromolecules, this work also gives an impression on the relation of chemical constitution and morphology of polymers to their properties, as well as on their application areas.




Polymer Synthesis: Theory and Practice


Book Description

Emphasis is on a broad description of the general methods and processes for the synthesis, modification and characterization of macromolecules. These more fundamental chapters will be supplemented by selected and detailed experiments. In addition to the preparative aspects, the book also gives the reader an impression on the relation of chemical constitution and morphology of Polymers to their properties, as well as on their application areas. Thus, an additional textbook will not be needed in order to understand the experiments. The 5th edition contains numerous changes: In recent years, so-called functional polymers which have special electrical, electronic, optical and biological properties, have gained more and more in interest. This textbook was therefore supplemented by recipes which describe the synthesis of these materials in a new chapter "Functional polymers". Together with new experiments in chapter 3,4 and 5 the book now contains more than 120 recipes that describe a wide range of macromolecules. From the reviews of recent editions: "This is an excellent book for all polymer chemists engaged in synthesis research studies and education. It is educationally sound and has excellent laboratory synthetic examples. The fundamentals are well done for the teaching of students and references are resonably up-to-date. As in previous issues, there are sections dealing with an introduction; structure and nomenclature; methods and techniques for synthesis, characterization, processing and modification of polymers. ....The authors have noted the following changes from previous editions- a new section on correlations of structure, morphology and properties; revision and enlargement of other property and characterization procedures; additional new experiments such as controlled radical polymerization; enzymatic polymerizations; microelmulsions; and electrical conducting polymers. This is a high quality textbook at a reasonable price and should be considered as a suitable reference for all engaged in synthetic areas of polymer research." (Eli M. Pearce, Polytechnic University, Brooklyn, NY, USA)