Progress in Mathematics 2006


Book Description




Progress in Mathematics


Book Description




Recent Progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science


Book Description

This volume is an excellent resource for professionals in various areas of applications of mathematics, modeling, and computational science. It focuses on recent progress and modern challenges in these areas. The volume provides a balance between fundamental theoretical and applied developments, emphasizing the interdisciplinary nature of modern trends and detailing state-of-the-art achievements in Applied Mathematics, Modeling, and Computational Science. The chapters have been authored by international experts in their respective fields, making this book ideal for researchers in academia, practitioners, and graduate students. It can also serve as a reference in the diverse selected areas of applied mathematics, modelling, and computational sciences, and is ideal for interdisciplinary collaborations.




What's Happening in the Mathematical Sciences


Book Description

Mathematicians like to point out that mathematics is universal. In spite of this, most people continue to view it as either mundane (balancing a checkbook) or mysterious (cryptography). This fifth volume of the What's Happening series contradicts that view by showing that mathematics is indeed found everywhere-in science, art, history, and our everyday lives. Here is some of what you'll find in this volume: Mathematics and Science Mathematical biology: Mathematics was key tocracking the genetic code. Now, new mathematics is needed to understand the three-dimensional structure of the proteins produced from that code. Celestial mechanics and cosmology: New methods have revealed a multitude of solutions to the three-body problem. And other new work may answer one of cosmology'smost fundamental questions: What is the size and shape of the universe? Mathematics and Everyday Life Traffic jams: New models are helping researchers understand where traffic jams come from-and maybe what to do about them! Small worlds: Researchers have found a short distance from theory to applications in the study of small world networks. Elegance in Mathematics Beyond Fermat's Last Theorem: Number theorists are reaching higher ground after Wiles' astounding 1994 proof: new developments inthe elegant world of elliptic curves and modular functions. The Millennium Prize Problems: The Clay Mathematics Institute has offered a million dollars for solutions to seven important and difficult unsolved problems. These are just some of the topics of current interest that are covered in thislatest volume of What's Happening in the Mathematical Sciences. The book has broad appeal for a wide spectrum of mathematicians and scientists, from high school students through advanced-level graduates and researchers.




Advances in Mathematics Education Research on Proof and Proving


Book Description

This book explores new trends and developments in mathematics education research related to proof and proving, the implications of these trends and developments for theory and practice, and directions for future research. With contributions from researchers working in twelve different countries, the book brings also an international perspective to the discussion and debate of the state of the art in this important area. The book is organized around the following four themes, which reflect the breadth of issues addressed in the book: • Theme 1: Epistemological issues related to proof and proving; • Theme 2: Classroom-based issues related to proof and proving; • Theme 3: Cognitive and curricular issues related to proof and proving; and • Theme 4: Issues related to the use of examples in proof and proving. Under each theme there are four main chapters and a concluding chapter offering a commentary on the theme overall.




Landscape of 21st Century Mathematics


Book Description

Landscape of 21st Century Mathematics offers a detailed cross section of contemporary mathematics. Important results of the 21st century are motivated and formulated, providing an overview of recent progress in the discipline. The theorems presented in this book have been selected among recent achievements whose statements can be fully appreciated without extensive background. Grouped by subject, the selected theorems represent all major areas of mathematics: number theory, combinatorics, analysis, algebra, geometry and topology, probability and statistics, algorithms and complexity, and logic and set theory. The presentation is self-contained with context, background and necessary definitions provided for each theorem, all without sacrificing mathematical rigour. Where feasible, brief indications of the main ideas of a proof are given. Rigorous yet accessible, this book presents an array of breathtaking recent advances in mathematics. It is written for everyone with a background in mathematics, from inquisitive university students to mathematicians curious about recent achievements in areas beyond their own.




Progress in Mathematics Book for class 6


Book Description

Goyal Brothers Prakashan




Recent Progress in Mathematics


Book Description

This book consists of five chapters presenting problems of current research in mathematics, with its history and development, current state, and possible future direction. Four of the chapters are expository in nature while one is based more directly on research. All deal with important areas of mathematics, however, such as algebraic geometry, topology, partial differential equations, Riemannian geometry, and harmonic analysis. This book is addressed to researchers who are interested in those subject areas. Young-Hoon Kiem discusses classical enumerative geometry before string theory and improvements after string theory as well as some recent advances in quantum singularity theory, Donaldson–Thomas theory for Calabi–Yau 4-folds, and Vafa–Witten invariants. Dongho Chae discusses the finite-time singularity problem for three-dimensional incompressible Euler equations. He presents Kato's classical local well-posedness results, Beale–Kato–Majda's blow-up criterion, and recent studies on the singularity problem for the 2D Boussinesq equations. Simon Brendle discusses recent developments that have led to a complete classification of all the singularity models in a three-dimensional Riemannian manifold. He gives an alternative proof of the classification of noncollapsed steady gradient Ricci solitons in dimension 3. Hyeonbae Kang reviews some of the developments in the Neumann–Poincare operator (NPO). His topics include visibility and invisibility via polarization tensors, the decay rate of eigenvalues and surface localization of plasmon, singular geometry and the essential spectrum, analysis of stress, and the structure of the elastic NPO. Danny Calegari provides an explicit description of the shift locus as a complex of spaces over a contractible building. He describes the pieces in terms of dynamically extended laminations and of certain explicit “discriminant-like” affine algebraic varieties.




Progress in Mathematics


Book Description

This volume contains two review articles: "Stochastic Pro gramming" by Vo V. Kolbin, and "Application of Queueing-Theoretic Methods in Operations Research, " by N. Po Buslenko and A. P. Cherenkovo The first article covers almost all aspects of stochastic programming. Many of the results presented in it have not pre viously been surveyed in the Soviet literature and are of interest to both mathematicians and economists. The second article com prises an exhaustive treatise on the present state of the art of the statistical methods of queueing theory and the statistical modeling of queueing systems as applied to the analysis of complex systems. Contents STOCHASTIC PROGRAMMING V. V. Kolbin Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 § 1. The Geometry of Stochastic Linear Programming Problems. . . . . . . . . . . . . . . . . . . . 5 § 2. Chance-Constrained Problems . . . . . . . . . 8 § 3. Rigorous Statement of stochastic Linear Programming Problems . . . . . . . . . . 16 § 4. Game-Theoretic Statement of Stochastic Linear Programming Problems. . . . . . . . 18 § 5. Nonrigorous Statement of SLP Problems . . . 19 § 6. Existence of Domains of Stability of the Solutions of SLP Problems . . . . . . . . . 29 § 7. Stability of a Solution in the Mean. . . . . . . . . . . . 30 § 8. Dual Stochastic Linear Programming Problems. . . 37 § 9. Some Algorithms for the Solution of Stochastic Linear Programming Problems . . . . . . . . . . 40 § 10. Stochastic Nonlinear Programming: Some First Results . . . . . . . . . . . . . . . . . . . . . . 42 § 11. The Two-Stage SNLP Problem. . . . . . . . . . . . 47 § 12. Optimality and Existence of a Plan in Stochastic Nonlinear Programming Problems. 58 Literature Cited . . . . . . . . . . . . . . . . . . . . . . . . . . .