Lasers and Electro-optics


Book Description

Covering a broad range of topics in modern optical physics and engineering, this textbook is invaluable for undergraduate students studying laser physics, optoelectronics, photonics, applied optics and optical engineering. This new edition has been re-organized, and now covers many new topics such as the optics of stratified media, quantum well lasers and modulators, free electron lasers, diode-pumped solid state and gas lasers, imaging and non-imaging optical systems, squeezed light, periodic poling in nonlinear media, very short pulse lasers and new applications of lasers. The textbook gives a detailed introduction to the basic physics and engineering of lasers, as well as covering the design and operational principles of a wide range of optical systems and electro-optic devices. It features full details of important derivations and results, and provides many practical examples of the design, construction and performance characteristics of different types of lasers and electro-optic devices.




Laser Technology, Applications and Future Prospects


Book Description

In this book, the authors present current research in laser technology applications and future prospects. Topics include the problems and solutions of ultra high power and intensity lasers; laser technologies applied for semiconductor HgCdTe and Chalcogenide thin films; prediction and analytical description of single laser tracks geometry and 316L stainless steel microstructure; and the laser induced transfer of organic materials.




New Research on Lasers and Electro-optics


Book Description

It is expected that ongoing advances in optics will revolutionise the 21st century as they began doing in the last quarter of the 20th. Such fields as communications, materials science, computing and medicine are leaping forward based on developments in optics. This series presents leading edge research on optics and lasers from researchers spanning the globe.




New Trends in Lasers and Electro-optics Research


Book Description

It is expected that advances in optics will revolutionise the 21st century as they began doing in the last quarter of the 20th. Such fields as communications, materials science, computing and medicine are leaping forward based on developments in optics. This series presents research on optics and lasers from researchers spanning the globe.




New Developments in Lasers and Electro-optics Research


Book Description

It is expected that ongoing advances in optics will revolutionise the 21st century as they began doing in the last quarter of the 20th. Such fields as communications, materials science, computing and medicine are leaping forward based on developments in optics. This new series presents leading edge research on optics and lasers from researchers spanning the globe.




Harnessing Light


Book Description

Optical science and engineering affect almost every aspect of our lives. Millions of miles of optical fiber carry voice and data signals around the world. Lasers are used in surgery of the retina, kidneys, and heart. New high-efficiency light sources promise dramatic reductions in electricity consumption. Night-vision equipment and satellite surveillance are changing how wars are fought. Industry uses optical methods in everything from the production of computer chips to the construction of tunnels. Harnessing Light surveys this multitude of applications, as well as the status of the optics industry and of research and education in optics, and identifies actions that could enhance the field's contributions to society and facilitate its continued technical development.




Laser Radar


Book Description

In today's world, the range of technologies with the potential to threaten the security of U.S. military forces is extremely broad. These include developments in explosive materials, sensors, control systems, robotics, satellite systems, and computing power, to name just a few. Such technologies have not only enhanced the capabilities of U.S. military forces, but also offer enhanced offensive capabilities to potential adversaries - either directly through the development of more sophisticated weapons, or more indirectly through opportunities for interrupting the function of defensive U.S. military systems. Passive and active electro-optical (EO) sensing technologies are prime examples. Laser Radar considers the potential of active EO technologies to create surprise; i.e., systems that use a source of visible or infrared light to interrogate a target in combination with sensitive detectors and processors to analyze the returned light. The addition of an interrogating light source to the system adds rich new phenomenologies that enable new capabilities to be explored. This report evaluates the fundamental, physical limits to active EO sensor technologies with potential military utility; identifies key technologies that may help overcome the impediments within a 5-10 year timeframe; considers the pros and cons of implementing each existing or emerging technology; and evaluates the potential uses of active EO sensing technologies, including 3D mapping and multi-discriminate laser radar technologies.




Laser Beams


Book Description

This book considers some general laser-induced processes that are involved in laser-matter interactions. A brief review is presented about a very interesting application of laser beams in the fields of materials science: the growth of zinc oxide (ZnO) nanostructured films by Pulsed Laser Deposition (PLD). In addition, safe and precise cavity detection, especially of dangerous or inaccessible voids, is essential to safe production in a working mine. The advantages and disadvantages of laser detection systems are analysed, and a combination of laser scanning techniques and conventional survey methodology is proposed. Other chapters in this book present an overview on laser cladding, a discussion of the applications of structured laser beams in laser refractography technology, a review of some fundamentals of laser-induced breakdown spectroscopy (LIBS) and an analysis of laser forming of steel parts by means of diode lasers.




Theory and Application of Laser Chemical Vapor Deposition


Book Description

In this monograph, the authors offer a comprehensive examination of the latest research on Laser Chemical Vapor Deposition (LCVD). Chapters explore the physics of LCVD as well as the principles of a wide range of related phenomena-including laser-matter interactions, heat transfer, fluid flow, chemical kinetics, and adsorption. With this reference, researchers will discover how to apply these principles to developing theories about various types of LCVD processes; gain greater insight into the basic mechanisms of LCVD; and obtain the ability to design and control an LCVD system.




Fundamentals of Laser Optics


Book Description

The laser, initially called the "optical maser," was proposed in 1958 by Charles Townes and Arthur Schawlow; in 1960, Theodore Maiman was the first among several researchers to achieve laser oscillation by using a ruby crystal. In the following quarter of a century, a considerable amount of re search and development has taken place, and the laser is now utilized for many diverse applications, ranging from the commonplace compact disk to intricate surgical applications in medicine. Since I first entered the laboratory of Professor Yasuharu Suematsu in 1962 to complete my thesis, I have been studying the new field of laser optics. In spite of many expectations and a vast investment in research, the first practical use of lasers was difficult to of Univ. Erlangen once jokingly achieve. The late Professor K. H. Zchauer remarked that laser was defined by an English physicist as "Less Application of Stimulated Expensive Research. " In a similiar vein, Dr. Herwig Kogelnik reminded me that in the early 1960s, maser was often called "Money Acqui sition Scheme for Expensive Research. " Initially I worked with a ruby laser, then with a helium-neon-gas laser, and am presently engaged in semiconductor laser research. There are proba bly not a large number of researchers who have had the opportunity to build these three representative types of lasers. My primary objective of study lies in optical communications however, and therefore, I have been approaching the laser mainly as a lightwave propagator.