New Synthetic Technologies in Medicinal Chemistry


Book Description

The modern synthetic chemist applies all the tools available to identify the drug-like molecules with the best chances of becoming novel drugs. This book will act as a primer for graduates and postgraduates interested in a career in drug discovery. It covers both synthetic technologies currently impacting medicinal chemistry and emerging areas. The chapters focus on topics including: parallel medicinal chemistry; solid supported reagents; microwave assisted chemistry; flow synthesis, and high throughput reaction screening.




Platform Technologies in Drug Discovery and Validation


Book Description

Platform Technologies in Drug Discovery and Validation, Volume 50, the latest release in the Annual Reports in Medicinal Chemistry series, provides timely and critical reviews of important topics in medicinal chemistry, with an emphasis on emerging topics in the biological sciences. Topics covered in this new volume include DELT, Oligos: ASO, siRNA, CRISPR, Micro-fluidic chemistry, High throughput screening, Kinase-centric computational drug development, Virtual Screening, Phenotypic screening, PROTACS, Chemical Biology, Fragment-based lead generation, Antibody-Drug Conjugates, Antibody-recruiting small molecules, Deuteration, and Peptides. - Unique for its treatment of platform technologies for medicinal chemistry and target validation - Provides a single, rich volume that summaries a broad spectrum of expertise relevant to the field - Presents state-of-the-art summaries of platform technologies




Beyond the Molecular Frontier


Book Description

Chemistry and chemical engineering have changed significantly in the last decade. They have broadened their scopeâ€"into biology, nanotechnology, materials science, computation, and advanced methods of process systems engineering and controlâ€"so much that the programs in most chemistry and chemical engineering departments now barely resemble the classical notion of chemistry. Beyond the Molecular Frontier brings together research, discovery, and invention across the entire spectrum of the chemical sciencesâ€"from fundamental, molecular-level chemistry to large-scale chemical processing technology. This reflects the way the field has evolved, the synergy at universities between research and education in chemistry and chemical engineering, and the way chemists and chemical engineers work together in industry. The astonishing developments in science and engineering during the 20th century have made it possible to dream of new goals that might previously have been considered unthinkable. This book identifies the key opportunities and challenges for the chemical sciences, from basic research to societal needs and from terrorism defense to environmental protection, and it looks at the ways in which chemists and chemical engineers can work together to contribute to an improved future.




Practical Medicinal Chemistry with Macrocycles


Book Description

Including case studies of macrocyclic marketed drugs and macrocycles in drug development, this book helps medicinal chemists deal with the synthetic and conceptual challenges of macrocycles in drug discovery efforts. Provides needed background to build a program in macrocycle drug discovery –design criteria, macrocycle profiles, applications, and limitations Features chapters contributed from leading international figures involved in macrocyclic drug discovery efforts Covers design criteria, typical profile of current macrocycles, applications, and limitations




Burger's Medicinal Chemistry, Drug Discovery and Development, 8 Volume Set


Book Description

Burger’s Medicinal Chemistry, Drug Discovery and Development Explore the freshly updated flagship reference for medicinal chemists and pharmaceutical professionals The newly revised eighth edition of the eight-volume Burger’s Medicinal Chemistry, Drug Discovery and Development is the latest installment in this celebrated series covering the entirety of the drug development and discovery process. With the addition of expert editors in each subject area, this eight-volume set adds 35 chapters to the extensive existing chapters. New additions include analyses of opioid addiction treatments, antibody and gene therapy for cancer, blood-brain barrier, HIV treatments, and industrial-academic collaboration structures. Along with the incorporation of practical material on drug hunting, the set features sections on drug discovery, drug development, cardiovascular diseases, metabolic diseases, immunology, cancer, anti-Infectives, and CNS disorders. The text continues the legacy of previous volumes in the series by providing recognized, renowned, authoritative, and comprehensive information in the area of drug discovery and development while adding cutting-edge new material on issues like the use of artificial intelligence in medicinal chemistry. Included: Volume 1: Methods in Drug Discovery, edited by Kent D. Stewart Volume 2: Discovering Lead Molecules, edited by Kent D. Stewart Volume 3: Drug Development, edited by Ramnarayan S. Randad and Michael Myers Volume 4: Cardiovascular, Endocrine, and Metabolic Diseases, edited by Scott D. Edmondson Volume 5: Pulmonary, Bone, Immunology, Vitamins, and Autocoid Therapeutic Agents, edited by Bryan H. Norman Volume 6: Cancer, edited by Barry Gold and Donna M. Huryn Volume 7: Anti-Infectives, edited by Roland E. Dolle Volume 8: CNS Disorders, edited by Richard A. Glennon Perfect for research departments in the pharmaceutical and biotechnology industries, Burger’s Medicinal Chemistry, Drug Discovery and Development can be used by graduate students seeking a one-stop reference for drug development and discovery and deserves its place in the libraries of biomedical research institutes, medical, pharmaceutical, and veterinary schools.




Fluorine in Medicinal Chemistry and Chemical Biology


Book Description

The extraordinary potential of fluorine-containing molecules in medicinal chemistry and chemical biology has been recognized by researchers outside of the traditional fluorine chemistry field, and thus a new wave of fluorine chemistry is rapidly expanding its biomedical frontiers. With several of the best selling drugs in the world crucially containing fluorine atoms, the incorporation of fluorine to drug leads has become an essential practice in biomedical research, especially for drug design and discovery as well as development. Focusing on the unique and significant roles that fluorine plays in medicinal chemistry and chemical biology, this book reviews recent advances and future prospects in this rapidly developing field. Topics covered include: Discovery and development of fluorine containing drugs and drug candidates. New and efficient synthetic methods for medicinal chemistry and the optimisation of fluorine-containing drug candidates. Structural and chemical biology of fluorinated amino acids and peptides. Fluorine labels as probes in metabolic study, protein engineering and clinical diagnosis. Applications of 19F NMR spectroscopy in biomedical research. An appendix presents an invaluable index of all fluorine-containing drugs that have been approved by the US Food and Drug Administration, including information on structure and pharmaceutical action. Fluorine in Medicinal Chemistry and Chemical Biology will serve as an excellent reference source for graduate students as well as academic and industrial researchers who want to take advantage of fluorine in biomedical research.




Recent Advances in Medicinal Chemistry, Volume 1


Book Description

Originally published by Bentham and now distributed by Elsevier, Recent Advances in Medicinal Chemistry, Volume 1 covers leading-edge research and recent developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, drug targets, and natural product research and structure-activity relationship studies. The fourteen updated reviews include unique experimental data and references, and each article highlights an important topic in current medicinal chemistry research. Topics covered include: aureolic acid group of anti-cancer antibiotics and non-steroidal anti-inflammatory drugs; aromatase inhibitors in adjuvant endocrine treatment of early-stage breast cancer in postmenopausal women; Rho GTPases and statins in targeting and developing therapies for tumors; and more. - Edited and written by leading experts in medicinal chemistry research - Reviews recent advances in the field, including the characterization of inorganic nanomaterials as therapeutic vehicles - Covers a variety of topical areas, such as HPLC and in the analysis of tricyclic antidepressants in biological samples, and tannins and their influence on health




Artificial Intelligence in Drug Design


Book Description

This volume looks at applications of artificial intelligence (AI), machine learning (ML), and deep learning (DL) in drug design. The chapters in this book describe how AI/ML/DL approaches can be applied to accelerate and revolutionize traditional drug design approaches such as: structure- and ligand-based, augmented and multi-objective de novo drug design, SAR and big data analysis, prediction of binding/activity, ADMET, pharmacokinetics and drug-target residence time, precision medicine and selection of favorable chemical synthetic routes. How broadly are these approaches applied and where do they maximally impact productivity today and potentially in the near future. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary software and tools, step-by-step, readily reproducible modeling protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and unique, Artificial Intelligence in Drug Design is a valuable resource for structural and molecular biologists, computational and medicinal chemists, pharmacologists and drug designers.




Modern Inorganic Synthetic Chemistry


Book Description

The contributors to this book discuss inorganic synthesis reactions, dealing with inorganic synthesis and preparative chemistry under specific conditions. They go on to describe the synthesis, preparation and assembly of six important categories of compounds with wide coverage of distinct synthetic chemistry systems




Peptidomimetics in Organic and Medicinal Chemistry


Book Description

A peptidomimetic is a small protein-like chain designed to mimic a peptide with adjusted molecular properties such as enhanced stability or biological activity. It is a very powerful approach for the generation of small-molecule-based drugs as enzyme inhibitors or receptor ligands. Peptidomimetics in Organic and Medicinal Chemistry outlines the concepts and synthetic strategies underlying the building of bioactive compounds of a peptidomimetic nature. Topics covered include the chemistry of unnatural amino acids, peptide- and scaffold-based peptidomimetics, amino acid-side chain isosteres, backbone isosteres, dipeptide isosteres, beta-turn peptidomimetics, proline-mimetics as turn inducers, cyclic scaffolds, amino acid surrogates, and scaffolds for combinatorial chemistry of peptidomimetics. Case studies in the hit-to-lead process, such as the development of integrin ligands and thrombin inhibitors, illustrate the successful application of peptidomimetics in drug discovery.