New Targets in Inflammation


Book Description

For the past 100 years the mainstay of therapy for rheumatoid arthritis (RA) has been aspirin or other drugs of the non-steroid anti-inflammatory group. In 1971 Vane pro posed that both the beneficial and toxic actions of these drugs was through inhibition of prostaglandin synthesis. The recent discovery that prostaglandins responsible for pain and other symptoms at inflammatory foci are synthesized by an inducible cyclooxygenase (COX-2) that is encoded by a gene distinct from that of the consti tutive enzyme (COX-I) provided a new target for therapy of RA. A drug that would selectively inhibit COX-2 would hopefully produce the symptomatic benefit provided by existing NSAIDs without the gastrointestinal and renal toxicity due to the inhibition of COX-I. Drugs selective for COX-2 are now available. Experimental studies have shown them to be effective with minimal toxicity, and in clinical trials gastric and renal toxicities are less. Highly selective COX-2 inhibitors, perhaps designed with knowledge of the crystal structures of COX-I and COX-2, are also available. Other experimental studies, including those in animals lacking effective genes for COX-lor COX-2 and in experimental carcinomas, suggest there is still much to be learned of the pathophysiological functions of these enzymes. The inflammatory response is a complex reaction involving many mediators that derive from white blood cells, endothelial cells and other tissues. Preliminary data have revealed that inhibitors of the cytokines and adhesion molecules that play a crucial role in the migration of white cells to inflammatory sites may be useful in RA.




Inflammation and the Microcirculation


Book Description

The microcirculation is highly responsive to, and a vital participant in, the inflammatory response. All segments of the microvasculature (arterioles, capillaries, and venules) exhibit characteristic phenotypic changes during inflammation that appear to be directed toward enhancing the delivery of inflammatory cells to the injured/infected tissue, isolating the region from healthy tissue and the systemic circulation, and setting the stage for tissue repair and regeneration. The best characterized responses of the microcirculation to inflammation include impaired vasomotor function, reduced capillary perfusion, adhesion of leukocytes and platelets, activation of the coagulation cascade, and enhanced thrombosis, increased vascular permeability, and an increase in the rate of proliferation of blood and lymphatic vessels. A variety of cells that normally circulate in blood (leukocytes, platelets) or reside within the vessel wall (endothelial cells, pericytes) or in the perivascular space (mast cells, macrophages) are activated in response to inflammation. The activation products and chemical mediators released from these cells act through different well-characterized signaling pathways to induce the phenotypic changes in microvessel function that accompany inflammation. Drugs that target a specific microvascular response to inflammation, such as leukocyte-endothelial cell adhesion or angiogenesis, have shown promise in both the preclinical and clinical studies of inflammatory disease. Future research efforts in this area will likely identify new avenues for therapeutic intervention in inflammation. Table of Contents: Introduction / Historical Perspectives / Anatomical Considerations / Impaired Vasomotor Responses / Capillary Perfusion / Angiogenesis / Leukocyte-Endothelial Cell Adhesion / Platelet-Vessel Wall Interactions / Coagulation and Thrombosis / Endothelial Barrier Dysfunction / Epilogue / References




Inflammation and Cancer


Book Description

This volume examines in detail the role of chronic inflammatory processes in the development of several types of cancer. Leading experts describe the latest results of molecular and cellular research on infection, cancer-related inflammation and tumorigenesis. Further, the clinical significance of these findings in preventing cancer progression and approaches to treating the diseases are discussed. Individual chapters cover cancer of the lung, colon, breast, brain, head and neck, pancreas, prostate, bladder, kidney, liver, cervix and skin as well as gastric cancer, sarcoma, lymphoma, leukemia and multiple myeloma.




Inflammation Protocols


Book Description

Inflammation has been described as the basis of many pathologies of human disease. When one considers the updated signs of inflammation, they would be vasodilation, cell migration, and, in the case of chronic inflam- tion, cell proliferation, often with an underlying autoimmune basis. Gen- ally, inflammation may be divided into acute, chronic, and autoimmune, - though the editors believe that most, if not all, chronic states are often the result of an autoimmune response to an endogenous antigen. Thus, a proper understanding of the inflammatory basis may provide clues to new therap- tic targets not only in classical inflammatory diseases, but atherosclerosis, cancer, and ischemic heart disease as well. The lack of advances in classical inflammatory diseases, such as rh- matoid arthritis, may in part arise from a failure to classify the disease into different forms. That different forms exist is exemplified in patients with d- fering responses to existing antiinflammatory drugs, ranging from nonresponders to very positive responders for a particular nonsteroidal an- inflammatory drug (NSAID). Though researchers have progressively unr- eled the mechanisms, the story is far from complete. It should also be noted that the inflammatory response is part of the innate immune response, or to use John Hunter’s words in 1795, “inflammation is a salutary response.” That may be applied in particular to the defensive response to invading micro- ganisms.







Enteric Glia


Book Description

The enteric nervous system (ENS) is a complex neural network embedded in the gut wall that orchestrates the reflex behaviors of the intestine. The ENS is often referred to as the “little brain” in the gut because the ENS is more similar in size, complexity and autonomy to the central nervous system (CNS) than other components of the autonomic nervous system. Like the brain, the ENS is composed of neurons that are surrounded by glial cells. Enteric glia are a unique type of peripheral glia that are similar to astrocytes of the CNS. Yet enteric glial cells also differ from astrocytes in many important ways. The roles of enteric glial cell populations in the gut are beginning to come to light and recent evidence implicates enteric glia in almost every aspect of gastrointestinal physiology and pathophysiology. However, elucidating the exact mechanisms by which enteric glia influence gastrointestinal physiology and identifying how those roles are altered during gastrointestinal pathophysiology remain areas of intense research. The purpose of this e-book is to provide an introduction to enteric glial cells and to act as a resource for ongoing studies on this fascinating population of glia. Table of Contents: Introduction / A Historical Perspective on Enteric Glia / Enteric Glia: The Astroglia of the Gut / Molecular Composition of Enteric Glia / Development of Enteric Glia / Functional Roles of Enteric Glia / Enteric Glia and Disease Processes in the Gut / Concluding Remarks / References / Author Biography




Designing Multi-Target Drugs


Book Description

Multi-target drug discovery (MTDD) is an emerging area of increasing interest to the drug discovery community. Drugs that modulate several targets have the potential for an improved balance of efficacy and safety compared to single targets agents. Although there are a number of marketed drugs that are thought to derive their therapeutic benefit by virtue of interacting with multiple targets, the majority of these were discovered accidentally. Written by world renowned experts, this is the first book to gather together knowledge and experiences of the rational discovery of multi-target drugs. It describes the current state of the art, the achievements and the challenges of the field and importantly the lessons learned by researchers to date and their application to future MTDD.




Emerging Nanotechnologies in Immunology


Book Description

Emerging Nanotechnologies in Immunology aims to deliver a systematic and comprehensive review of data concerning the nature of interaction and nano-related risks between the nanophamaceuticals currently in the pipeline of S&T development for skin, ocular, and nasal drug delivery, including absorption, toxicity, and the ability to distribute after systemic exposure.The scientific development of manufactured nanomaterials for drug delivery is increasing rapidly. One of the most prominent applications is topical drug delivery, where cutaneous, ocular, and nasal exposure becomes even more relevant. These targets are the first barrier that nanoparticles encounter when in contact with the human body.The contributors addresses a representative set of the broad spectrum of nanopharmaceuticals currently being used, including cationic lipid nanoparticles, polymeric PLGA, PLA nanoparticles, biomacromolecules-based nanoparticles, and other scaffolds tissue engineered skin substitutes. Regulation and risk is also covered, since the safety of these nanophamaceuticals still represents a barrier to their wide innovative use. - Provides the reader with a thorough knowledge of the safety aspects of nanopharmaceuticals which are currently under research - Focuses on the characterization and quantification of the nanopharmaceuticals - Allows readers to understand the correlation between the nature of the materials and their potential nanotoxicological effects - Includes an overview of regulatory aspects related to the R&D of nanopharmaceuticals




Targeted Drug Strategies for Cancer and Inflammation


Book Description

Folate pathways are essential in metabolism and macromolecule synthesis. Antifolate drugs that are largely transported via a high capacity folate transporter (i.e. the reduced-folate carrier) and inhibit folate-dependent enzymes include the dihydrofolate reductase inhibitor, methotrexate, and the thymidylate synthase inhibitors, raltitrexed and pemetrexed. Major advances in folate research made within the last decade include (i) the approval of pemetrexed for the treatment of lung cancer and mesothelioma, and (ii) the demonstration that cell membrane-anchored folate receptors (FR) are exploitable for cancer and inflammatory disease management. FRs are not widely distributed in normal tissues, except on some luminal surfaces; however, they are accessible to systemically administered agents when expressed on many cancers as well as on activated macrophages involved in various inflammatory diseases. High affinity folate-radioisotope conjugates have been developed for imaging pathogenic FR-positive diseases, including cancer. Since the FR transports folates via a low capacity but high affinity endocytic pathway, a variety of FR-targeted antifolate drugs and folate conjugates bearing a wide range of payloads (including cytotoxic drugs) are currently being developed which exploit this property. The FR is also being utilized in immunotherapy approaches for the treatment of overexpressing cancers.




Targeting Angiogenesis, Inflammation and Oxidative Stress in Chronic Diseases


Book Description

Targeting Angiogenesis, Inflammation and Oxidative Stress in Chronic Diseases presents recent advances in the vivid molecular pathways targeting angiogenesis, inflammation and oxidative stress that contribute very widely to the genesis of chronic diseases. The books will also highlight the drugs from natural and synthetic origin in the management/prevention/treatment of diseases along with the drug delivery approaches. The book’s authors from various key institutions around the globe will deliver well-structured and well-designed chapters. The systematic presented information and knowledge will surely aid consistency and continuity. The multifaceted book is enriched with deep scientific contents. Each chapter will clearly define the facts, emerging role of molecular pathways and the targets and focus will be imparted on key challenges associated and the future directions that will provide torch bearer thing for the researchers to explore new targets in the domain. Focuses on the pathogenesis of the disease, along with the molecular mechanism of action Includes updates on strategic design/delivery of drugs targeting angiogenesis, inflammation, and oxidative stress Provides recent advancements in the field of pathogenesis of chronic diseases