Femtosecond Laser Micromachining


Book Description

Femtosecond laser micromachining of transparent material is a powerful and versatile technology. In fact, it can be applied to several materials. It is a maskless technology that allows rapid device prototyping, has intrinsic three-dimensional capabilities and can produce both photonic and microfluidic devices. For these reasons it is ideally suited for the fabrication of complex microsystems with unprecedented functionalities. The book is mainly focused on micromachining of transparent materials which, due to the nonlinear absorption mechanism of ultrashort pulses, allows unique three-dimensional capabilities and can be exploited for the fabrication of complex microsystems with unprecedented functionalities.This book presents an overview of the state of the art of this rapidly emerging topic with contributions from leading experts in the field, ranging from principles of nonlinear material modification to fabrication techniques and applications to photonics and optofluidics.




Micromachining


Book Description

To present their work in the field of micromachining, researchers from distant parts of the world have joined their efforts and contributed their ideas according to their interest and engagement. Their articles will give you the opportunity to understand the concepts of micromachining of advanced materials. Surface texturing using pico- and femto-second laser micromachining is presented, as well as the silicon-based micromachining process for flexible electronics. You can learn about the CMOS compatible wet bulk micromachining process for MEMS applications and the physical process and plasma parameters in a radio frequency hybrid plasma system for thin-film production with ion assistance. Last but not least, study on the specific coefficient in the micromachining process and multiscale simulation of influence of surface defects on nanoindentation using quasi-continuum method provides us with an insight in modelling and the simulation of micromachining processes. The editors hope that this book will allow both professionals and readers not involved in the immediate field to understand and enjoy the topic.




Micromachining


Book Description

In this volume, Micromachining - New Trends and Applications, researchers from distant parts of the world have combined efforts and contributed their ideas and research work on micromachining. Their chapters will give you the opportunity to learn about materials, techniques, applications, challenges, and recent advancements in micromachining technology as well as about the state of the current micromachining market. Chapters also discuss concepts of micro-scale electronic component manufacturing, advancements in micromachining techniques of micro-electromechanical system (MEMS) piezoresistive pressure sensors to minimize offset drift due to humidity and temperature, the principles and classifications of force measuring systems with zero-compliance suspension, and triangular microcavity fabrication using micro-electrical discharge machining.




Trends and Applications in Mechanical Engineering, Composite Materials and Smart Manufacturing


Book Description

The fields of Mechanical Engineering, Composite Materials, and Smart Manufacturing find themselves at the heart of a pivotal predicament. As these industries grapple with the demands for efficiency, sustainability, and innovation, a need arises for a unified exploration of the transformative solutions within these domains. At this crucial moment, researchers, academics, and practitioners worldwide need to focus on understanding and solving the complex issues that are hindering progress. Trends and Applications in Mechanical Engineering, Composite Materials and Smart Manufacturing delves into solutions that propel industries, economies, and societies into a future defined by progress and resilience. At its core, this book strives to examine the disciplines of mechanical engineering, composite materials, and smart manufacturing. With the collaborative efforts of diverse experts, it attempts to create a comprehensive resource that not only identifies emerging trends but also unveils their impact on the real world. By acting as a driving force for advancing current research, bridging knowledge gaps, and presenting innovative solutions, the publication contributes significantly to the collective understanding of these disciplines. The goal is to empower scholars, educators, and professionals with the knowledge and insights required to sculpt the future of these increasingly complex industries.




Femtosecond Laser 3D Micromachining for Microfluidic and Optofluidic Applications


Book Description

Femtosecond lasers opened up new avenue in materials processing due to its unique features of ultrashort pulse width and extremely high peak intensity. One of the most important features of femtosecond laser processing is that strong absorption can be induced even by materials which are transparent to the femtosecond laser beam due to nonlinear multiphoton absorption. The multiphoton absorption allows us to perform not only surface but also three-dimensionally internal microfabrication of transparent materials such as glass. This capability makes it possible to directly fabricate three-dimensional microfluidics, micromechanics, microelectronics and microoptics embedded in the glass. Further, these microcomponents can be easily integrated in a single glass microchip by the simple procedure using the femtosecond laser. Thus, the femtosecond laser processing provides some advantages over conventional methods such as traditional semiconductor processing or soft lithography for fabrication of microfluidic, optofludic and lab-on-a-chip devices and thereby many researches on this topic are currently being carried out. This book presents a comprehensive review on the state of the art and future prospects of femtosecond laser processing for fabrication of microfluidics and optofludics including principle of femtosecond laser processing, detailed fabrication procedures of each microcomponent and practical applications to biochemical analysis.




Microengineering of Metals and Ceramics, Part I


Book Description

Microstructures, electronics, nanotechnology - these vast fields of research are growing together as the size gap narrows and many different materials are combined. Current research, engineering sucesses and newly commercialized products hint at the immense innovative potentials and future applications that open up once mankind controls shape and function from the atomic level right up to the visible world without any gaps. In this volume, authors from three major competence centres for microengineering illustrate step by step the process from designing and simulating microcomponents of metallic and ceramic materials to replicating micro-scale components by injection molding.




Current Trends and Future Developments on (Bio-) Membranes


Book Description

Membrane Systems for Hydrogen Production offers an overview of advanced technologies in the field of both catalysts and membrane technologies for hydrogen productions and energy saving. Catalysts play an irreplaceable role in chemical engineering for carrying out reaction at industrial level. Membrane processes are today well-recognized technologies in many fields, such as water and wastewater treatment, gas separation and purification, etc. This book relates these two fields and their role in electrochemical hydrogen production by presenting 5 specific chapters where the catalysts are compared to the membrane technology. The purpose of this book is to provide an overview on recently developed catalysts which work in combination with membrane operations for energy savings. This combination provides an example of strategies for engineering development and process intensification of interest for both industrial and developing countries. - Provides an overview of the interconnections between membrane technology and catalysts related to the electrochemical hydrogen production - Provides a comprehensive review of advanced research on the catalysts used in electrochemical processes and the use of related membrane processes - Addresses the key issues to introduce considerable process intensification in the hydrogen production







Laser Surface Engineering


Book Description

Lasers can alter the surface composition and properties of materials in a highly controllable way, which makes them efficient and cost-effective tools for surface engineering. This book provides an overview of the different techniques, the laser-material interactions and the advantages and disadvantages for different applications. Part one looks at laser heat treatment, part two covers laser additive manufacturing such as laser-enhanced electroplating, and part three discusses laser micromachining, structuring and surface modification. Chemical and biological applications of laser surface engineering are explored in part four, including ways to improve the surface corrosion properties of metals. - Provides an overview of thermal surface treatments using lasers, including the treatment of steels, light metal alloys, polycrystalline silicon and technical ceramics - Addresses the development of new metallic materials, innovations in laser cladding and direct metal deposition, and the fabrication of tuneable micro- and nano-scale surface structures - Chapters also cover laser structuring, surface modification, and the chemical and biological applications of laser surface engineering




3D Laser Microfabrication


Book Description

A thorough introduction to 3D laser microfabrication technology, leading readers from the fundamentals and theory to its various potent applications, such as the generation of tiny objects or three-dimensional structures within the bulk of transparent materials. The book also presents new theoretical material on dielectric breakdown, allowing a better understanding of the differences between optical damage on surfaces and inside the bulk, as well as a look into the future. Chemists, physicists, materials scientists and engineers will find this a valuable source of interdisciplinary knowledge in the field of laser optics and nanotechnology.