New Trends in Geometry


Book Description

This volume focuses on the interactions between mathematics, physics, biology and neuroscience by exploring new geometrical and topological modelling in these fields. Among the highlights are the central roles played by multilevel and scale-change approaches in these disciplines. The integration of mathematics with physics, as well as molecular and cell biology and the neurosciences, will constitute the new frontier of 21st century science, where breakthroughs are more likely to span across traditional disciplines.




New Trends in Geometric Analysis


Book Description

The aim of this book is to provide an overview of some of the progress made by the Spanish Network of Geometric Analysis (REAG, by its Spanish acronym) since its born in 2007. REAG was created with the objective of enabling the interchange of ideas and the knowledge transfer between several Spanish groups having Geometric Analysis as a common research line. This includes nine groups at Universidad Autónoma de Barcelona, Universidad Autónoma de Madrid, Universidad de Granada, Universidad Jaume I de Castellón, Universidad de Murcia, Universidad de Santiago de Compostela and Universidad de Valencia. The success of REAG has been substantiated with regular meetings and the publication of research papers obtained in collaboration between the members of different nodes. On the occasion of the 15th anniversary of REAG this book aims to collect some old and new contributions of this network to Geometric Analysis. The book consists of thirteen independent chapters, all of them authored by current members of REAG. The topics under study cover geometric flows, constant mean curvature surfaces in Riemannian and sub-Riemannian spaces, integral geometry, potential theory and Riemannian geometry, among others. Some of these chapters have been written in collaboration between members of different nodes of the network, and show the fruitfulness of the common research atmosphere provided by REAG. The rest of the chapters survey a research line or present recent progresses within a group of those forming REAG. Surveying several research lines and offering new directions in the field, the volume is addressed to researchers (including postdocs and PhD students) in Geometric Analysis in the large.




New Trends in Intuitive Geometry


Book Description

This volume contains 17 surveys that cover many recent developments in Discrete Geometry and related fields. Besides presenting the state-of-the-art of classical research subjects like packing and covering, it also offers an introduction to new topological, algebraic and computational methods in this very active research field. The readers will find a variety of modern topics and many fascinating open problems that may serve as starting points for research.




New Trends in Algebraic Geometry


Book Description

This book is the outcome of the 1996 Warwick Algebraic Geometry EuroConference, containing 17 survey and research articles selected from the most outstanding contemporary research topics in algebraic geometry. Several of the articles are expository: among these a beautiful short exposition by Paranjape of the new and very simple approach to the resolution of singularities; a detailed essay by Ito and Nakamura on the ubiquitous A,D,E classification, centred around simple surface singularities; a discussion by Morrison of the new special Lagrangian approach to giving geometric foundations to mirror symmetry; and two deep, informative surveys by Siebert and Behrend on Gromow-Witten invariants treating them from the point of view of algebraic and symplectic geometry. The remaining articles cover a wide cross-section of the most significant research topics in algebraic geometry. This includes Gromow-Witten invariants, Hodge theory, Calabi-Yau 3-folds, mirror symmetry and classification of varieties.




New Trends on Analysis and Geometry in Metric Spaces


Book Description

This book includes four courses on geometric measure theory, the calculus of variations, partial differential equations, and differential geometry. Authored by leading experts in their fields, the lectures present different approaches to research topics with the common background of a relevant underlying, usually non-Riemannian, geometric structure. In particular, the topics covered concern differentiation and functions of bounded variation in metric spaces, Sobolev spaces, and differential geometry in the so-called Carnot–Carathéodory spaces. The text is based on lectures presented at the 10th School on "Analysis and Geometry in Metric Spaces" held in Levico Terme (TN), Italy, in collaboration with the University of Trento, Fondazione Bruno Kessler and CIME, Italy. The book is addressed to both graduate students and researchers.




New Trends in Discrete and Computational Geometry


Book Description

Discrete and computational geometry are two fields which in recent years have benefitted from the interaction between mathematics and computer science. The results are applicable in areas such as motion planning, robotics, scene analysis, and computer aided design. The book consists of twelve chapters summarizing the most recent results and methods in discrete and computational geometry. All authors are well-known experts in these fields. They give concise and self-contained surveys of the most efficient combinatorical, probabilistic and topological methods that can be used to design effective geometric algorithms for the applications mentioned above. Most of the methods and results discussed in the book have not appeared in any previously published monograph. In particular, this book contains the first systematic treatment of epsilon-nets, geometric tranversal theory, partitions of Euclidean spaces and a general method for the analysis of randomized geometric algorithms. Apart from mathematicians working in discrete and computational geometry this book will also be of great use to computer scientists and engineers, who would like to learn about the most recent results.




Surveys on Recent Developments in Algebraic Geometry


Book Description

The algebraic geometry community has a tradition of running a summer research institute every ten years. During these influential meetings a large number of mathematicians from around the world convene to overview the developments of the past decade and to outline the most fundamental and far-reaching problems for the next. The meeting is preceded by a Bootcamp aimed at graduate students and young researchers. This volume collects ten surveys that grew out of the Bootcamp, held July 6–10, 2015, at University of Utah, Salt Lake City, Utah. These papers give succinct and thorough introductions to some of the most important and exciting developments in algebraic geometry in the last decade. Included are descriptions of the striking advances in the Minimal Model Program, moduli spaces, derived categories, Bridgeland stability, motivic homotopy theory, methods in characteristic and Hodge theory. Surveys contain many examples, exercises and open problems, which will make this volume an invaluable and enduring resource for researchers looking for new directions.




New Trends in Analysis and Geometry


Book Description

This unique mathematical volume brings together geometers, analysts, differential equations specialists and graph-theorists to provide a glimpse on recent mathematical trends whose commonalities have hitherto remained, for the most part, unnoticed. The applied mathematician will be pleasantly surprised with the interpretation of a voting system in terms of the fixed points of a mapping given in the book, as much as the classical analyst will be enthusiastic to find detailed discussions on the generalization of the notion of metric space, in which the metric takes values on an abstract monoid. Classical themes on fixed point theory are adapted to the diverse setting of graph theory, thus uncovering a set of tools whose power and versatility will be appreciated by mathematicians working on either area. The volume also includes recent results on variable exponent spaces which reveal much-needed connections with partial differential equations, while the incipient field of variational inequalities on manifolds, also explored here, will be of interest to researchers from a variety of fields.




Perspectives on the Teaching of Geometry for the 21st Century


Book Description

In recent years geometry seems to have lost large parts of its former central position in mathematics teaching in most countries. However, new trends have begun to counteract this tendency. There is an increasing awareness that geometry plays a key role in mathematics and learning mathematics. Although geometry has been eclipsed in the mathematics curriculum, research in geometry has blossomed as new ideas have arisen from inside mathematics and other disciplines, including computer science. Due to reassessment of the role of geometry, mathematics educators and mathematicians face new challenges. In the present ICMI study, the whole spectrum of teaching and learning of geometry is analysed. Experts from all over the world took part in this study, which was conducted on the basis of recent international research, case studies, and reports on actual school practice. This book will be of particular interest to mathematics educators and mathematicians who are involved in the teaching of geometry at all educational levels, as well as to researchers in mathematics education.




Recent Trends in Lorentzian Geometry


Book Description

Traditionally, Lorentzian geometry has been used as a necessary tool to understand general relativity, as well as to explore new genuine geometric behaviors, far from classical Riemannian techniques. Recent progress has attracted a renewed interest in this theory for many researchers: long-standing global open problems have been solved, outstanding Lorentzian spaces and groups have been classified, new applications to mathematical relativity and high energy physics have been found, and further connections with other geometries have been developed. Samples of these fresh trends are presented in this volume, based on contributions from the VI International Meeting on Lorentzian Geometry, held at the University of Granada, Spain, in September, 2011. Topics such as geodesics, maximal, trapped and constant mean curvature submanifolds, classifications of manifolds with relevant symmetries, relations between Lorentzian and Finslerian geometries, and applications to mathematical physics are included. ​ This book will be suitable for a broad audience of differential geometers, mathematical physicists and relativists, and researchers in the field.