Newton’s Method and Dynamical Systems
Author : H.-O. Peitgen
Publisher : Springer Science & Business Media
Page : 227 pages
File Size : 37,14 MB
Release : 2012-12-06
Category : Science
ISBN : 9400922817
Author : H.-O. Peitgen
Publisher : Springer Science & Business Media
Page : 227 pages
File Size : 37,14 MB
Release : 2012-12-06
Category : Science
ISBN : 9400922817
Author : Alexander G. Ramm
Publisher : John Wiley & Sons
Page : 522 pages
File Size : 11,30 MB
Release : 2013-06-07
Category : Mathematics
ISBN : 111819960X
Demonstrates the application of DSM to solve a broad range of operator equations The dynamical systems method (DSM) is a powerful computational method for solving operator equations. With this book as their guide, readers will master the application of DSM to solve a variety of linear and nonlinear problems as well as ill-posed and well-posed problems. The authors offer a clear, step-by-step, systematic development of DSM that enables readers to grasp the method's underlying logic and its numerous applications. Dynamical Systems Method and Applications begins with a general introduction and then sets forth the scope of DSM in Part One. Part Two introduces the discrepancy principle, and Part Three offers examples of numerical applications of DSM to solve a broad range of problems in science and engineering. Additional featured topics include: General nonlinear operator equations Operators satisfying a spectral assumption Newton-type methods without inversion of the derivative Numerical problems arising in applications Stable numerical differentiation Stable solution to ill-conditioned linear algebraic systems Throughout the chapters, the authors employ the use of figures and tables to help readers grasp and apply new concepts. Numerical examples offer original theoretical results based on the solution of practical problems involving ill-conditioned linear algebraic systems, and stable differentiation of noisy data. Written by internationally recognized authorities on the topic, Dynamical Systems Method and Applications is an excellent book for courses on numerical analysis, dynamical systems, operator theory, and applied mathematics at the graduate level. The book also serves as a valuable resource for professionals in the fields of mathematics, physics, and engineering.
Author : C. T. Kelley
Publisher : SIAM
Page : 117 pages
File Size : 22,19 MB
Release : 2003-01-01
Category : Mathematics
ISBN : 9780898718898
This book on Newton's method is a user-oriented guide to algorithms and implementation. In just over 100 pages, it shows, via algorithms in pseudocode, in MATLAB, and with several examples, how one can choose an appropriate Newton-type method for a given problem, diagnose problems, and write an efficient solver or apply one written by others. It contains trouble-shooting guides to the major algorithms, their most common failure modes, and the likely causes of failure. It also includes many worked-out examples (available on the SIAM website) in pseudocode and a collection of MATLAB codes, allowing readers to experiment with the algorithms easily and implement them in other languages.
Author : George Osipenko
Publisher : Springer
Page : 286 pages
File Size : 41,83 MB
Release : 2006-10-28
Category : Mathematics
ISBN : 3540355952
This book describes a family of algorithms for studying the global structure of systems. By a finite covering of the phase space we construct a directed graph with vertices corresponding to cells of the covering and edges corresponding to admissible transitions. The method is used, among other things, to locate the periodic orbits and the chain recurrent set, to construct the attractors and their basins, to estimate the entropy, and more.
Author : Robert Devaney
Publisher : CRC Press
Page : 360 pages
File Size : 19,1 MB
Release : 2018-03-09
Category : Mathematics
ISBN : 0429970854
The study of nonlinear dynamical systems has exploded in the past 25 years, and Robert L. Devaney has made these advanced research developments accessible to undergraduate and graduate mathematics students as well as researchers in other disciplines with the introduction of this widely praised book. In this second edition of his best-selling text, Devaney includes new material on the orbit diagram fro maps of the interval and the Mandelbrot set, as well as striking color photos illustrating both Julia and Mandelbrot sets. This book assumes no prior acquaintance with advanced mathematical topics such as measure theory, topology, and differential geometry. Assuming only a knowledge of calculus, Devaney introduces many of the basic concepts of modern dynamical systems theory and leads the reader to the point of current research in several areas.
Author : Ioannis K. Argyros
Publisher : Springer Science & Business Media
Page : 513 pages
File Size : 31,18 MB
Release : 2008-06-12
Category : Mathematics
ISBN : 0387727434
This monograph is devoted to a comprehensive treatment of iterative methods for solving nonlinear equations with particular emphasis on semi-local convergence analysis. Theoretical results are applied to engineering, dynamic economic systems, input-output systems, nonlinear and linear differential equations, and optimization problems. Accompanied by many exercises, some with solutions, the book may be used as a supplementary text in the classroom for an advanced course on numerical functional analysis.
Author : Robert L. Devaney
Publisher : CRC Press
Page : 571 pages
File Size : 49,38 MB
Release : 2021-11-28
Category : Mathematics
ISBN : 100048677X
There is an explosion of interest in dynamical systems in the mathematical community as well as in many areas of science. The results have been truly exciting: systems which once seemed completely intractable from an analytic point of view can now be understood in a geometric or qualitative sense rather easily. Scientists and engineers realize the power and the beauty of the geometric and qualitative techniques. These techniques apply to a number of important nonlinear problems ranging from physics and chemistry to ecology and economics. Computer graphics have allowed us to view the dynamical behavior geometrically. The appearance of incredibly beautiful and intricate objects such as the Mandelbrot set, the Julia set, and other fractals have really piqued interest in the field. This is text is aimed primarily at advanced undergraduate and beginning graduate students. Throughout, the author emphasizes the mathematical aspects of the theory of discrete dynamical systems, not the many and diverse applications of this theory. The field of dynamical systems and especially the study of chaotic systems has been hailed as one of the important breakthroughs in science in the past century and its importance continues to expand. There is no question that the field is becoming more and more important in a variety of scientific disciplines. New to this edition: •Greatly expanded coverage complex dynamics now in Chapter 2 •The third chapter is now devoted to higher dimensional dynamical systems. •Chapters 2 and 3 are independent of one another. •New exercises have been added throughout.
Author : Robert L. Devaney
Publisher : CRC Press
Page : 290 pages
File Size : 10,59 MB
Release : 2020-04-21
Category : Mathematics
ISBN : 1000065677
A First Course in Chaotic Dynamical Systems: Theory and Experiment, Second Edition The long-anticipated revision of this well-liked textbook offers many new additions. In the twenty-five years since the original version of this book was published, much has happened in dynamical systems. Mandelbrot and Julia sets were barely ten years old when the first edition appeared, and most of the research involving these objects then centered around iterations of quadratic functions. This research has expanded to include all sorts of different types of functions, including higher-degree polynomials, rational maps, exponential and trigonometric functions, and many others. Several new sections in this edition are devoted to these topics. The area of dynamical systems covered in A First Course in Chaotic Dynamical Systems: Theory and Experiment, Second Edition is quite accessible to students and also offers a wide variety of interesting open questions for students at the undergraduate level to pursue. The only prerequisite for students is a one-year calculus course (no differential equations required); students will easily be exposed to many interesting areas of current research. This course can also serve as a bridge between the low-level, often non-rigorous calculus courses, and the more demanding higher-level mathematics courses. Features More extensive coverage of fractals, including objects like the Sierpinski carpet and others that appear as Julia sets in the later sections on complex dynamics, as well as an actual chaos "game." More detailed coverage of complex dynamical systems like the quadratic family and the exponential maps. New sections on other complex dynamical systems like rational maps. A number of new and expanded computer experiments for students to perform. About the Author Robert L. Devaney is currently professor of mathematics at Boston University. He received his PhD from the University of California at Berkeley under the direction of Stephen Smale. He taught at Northwestern University and Tufts University before coming to Boston University in 1980. His main area of research is dynamical systems, primarily complex analytic dynamics, but also including more general ideas about chaotic dynamical systems. Lately, he has become intrigued with the incredibly rich topological aspects of dynamics, including such things as indecomposable continua, Sierpinski curves, and Cantor bouquets.
Author : Karl-Heinz Becker
Publisher : Cambridge University Press
Page : 420 pages
File Size : 46,56 MB
Release : 1989-10-26
Category : Computers
ISBN : 9780521369107
This 1989 book is about chaos, fractals and complex dynamics.
Author : Cornelius T. Leondes
Publisher : Routledge
Page : 338 pages
File Size : 20,9 MB
Release : 2021-09-02
Category : Mathematics
ISBN : 1351413236
The finite element, an approximation method for solving differential equations of mathematical physics, is a highly effective technique in the analysis and design, or synthesis, of structural dynamic systems. Starting from the system differential equations and its boundary conditions, what is referred to as a weak form of the problem (elaborated in the text) is developed in a variational sense. This variational statement is used to define elemental properties that may be written as matrices and vectors as well as to identify primary and secondary boundaries and all possible boundary conditions. Specific equilibrium problems are also solved. This book clearly reveals the effectiveness and great significance of the finite element method available and the essential role it will play in the future as further development occurs.