Electrochemical Devices for Energy Storage Applications


Book Description

This book explores a wide range of energy storage devices, such as a lithium ion battery, sodium ion battery, magnesium ion battery and supercapacitors. Providing a comprehensive review of the current field, it also discusses the history of these technologies and introduces next-generation rechargeable batteries and supercapacitors. This book will serve as a valuable reference for researchers working with energy storage technologies across the fields of physics, chemistry, and engineering. Features: • Edited by established authorities in the field, with chapter contributions from subject area specialists • Provides a comprehensive review of field • Up to date with the latest developments and research




New Carbon Based Materials for Electrochemical Energy Storage Systems: Batteries, Supercapacitors and Fuel Cells


Book Description

This book reviews research work on electrochemical power sources in the former Warsaw Pact countries. It explores the role carbon plays in the cathodes and anodes of power sources and reveals the latest research into the development of metal air batteries, supercapacitors, fuel cells and lithium-ion and lithium-ion polymer batteries. For the first time, a full chapter was devoted to metal-carbon composites as electrode materials of lithium-ion batteries




Electrochemical Energy Storage


Book Description

The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.




Fast-charging Electrodes for Next-generation Electrochemical Energy Storage Devices


Book Description

The advancement of battery technology not only enables the creation of lighter and more durable electronic devices and long-range, long-life electric vehicles but also enhances the efficiency of sustainable clean energy storage, thereby mitigating the climate crisis of global warming. In 2019, lithium-ion batteries (LIB) technology was awarded the Nobel Prize in Chemistry, recognizing its significant improvement in our lives, and bringing us a rechargeable green world. The overarching research theme in this dissertation is the development of the next generation of electrochemical energy storage devices that provide high-capacity and can be fast-charged. This development requires the exploration of innovative fast-charging battery electrodes, which are the critical component that enables the battery to supply power rapidly. The bronze phase materials investigated in this dissertation meet this criterion as they contain large lithium-ion diffusion channels which enable fast-charging anode materials for LIBs. Comparative electrochemical studies conducted for bronze phase materials with the same stoichiometry, but different compositions (Mo3Nb2O14 vs W3Nb2O14), offer valuable insights into the design of next-generation, fast-charging materials for LIBs. A second material system, Mo4O11, also possesses properties appropriate for a fast-charging anode material for LIBs. Although the original open structure of Mo4O11 was altered during the first lithiation process, the newly formed layer-like structure was able to achieve both high capacity and fast-charging capability. These studies show that designing materials with rapid ion diffusion pathways and selecting transition metals with multielectron redox capability offer a promising way for simultaneously achieving both high energy and power density in next-generation electrochemical energy storage devices. Another important consideration which plays a vital role in obtaining high-performance batteries is the structure of the electrode. With the increase of mass loading or thickness of tape-cast electrodes, the energy density of batteries is enhanced due to the incorporation of more active materials. However, above a certain thickness, the increasing tortuosity of both ion and electron transport in traditional tape-cast electrodes compromises the power and offsets the benefits of increasing the amount of active material. Leveraging 3D printing technology, it is possible to design intricate 3D electrode structures that establish macroscopic ion-diffusion pathways, thereby breaking the limits achieved with thick tape-cast electrodes. The approach taken in this dissertation is based on obtaining ultra-high mass loading of manganese dioxide (MnO2) on 3D-printed graphene aerogel (3D MnO2/GA) electrodes. For these studies, sodium-ion batteries (SIB) were investigated as the combination of earth-abundant, high mass loading of MnO2 and sodium-ion battery technology creates a cost-effective solution for fulfilling the increasing demands of grid-level energy storage. An ether-based electrolyte was shown to improve the cycling stability of MnO2 compared to several other non-aqueous electrolytes. The feasibility of this approach to obtain both excellent areal energy and power density was demonstrated using a high mass loading TiO2-MnO2 sodium ion battery. The results of this research not only underscore the significance of using 3D-printed electrodes to achieve high energy and fast-charging next-generation electrochemical energy storage devices, but also the use of 3D-printed electrodes to achieve the high mass loading desired for reducing the manufacturing costs for batteries. A related research topic on the properties of pseudocapacitive vanadium dioxide (VO2) with 3D printed graphene aerogel scaffold was designed to evaluate the scalability of 3D electrode structures. The areal capacity of 3D VO2/GA was found to scale with the increase of both mass loading and electrode thickness with only minor sacrifice of gravimetric capacity. The device level scalability of 3D electrodes and the feasibility of using thick 3D electrodes in a commercial electrochemical energy storage device was demonstrated using a pseudo-solid silica-based ionogel material. The resulting sodium metal battery demonstrated scalable areal energy density using a coin cell. The results of this dissertation, which include both the design of advanced electrode materials and development of 3D electrodes, provide a basis for the development of the next generation of electrochemical energy storage devices that exhibit high-capacity and fast-charging.







Novel Electrochemical Energy Storage Devices


Book Description

Novel Electrochemical Energy Storage Devices Explore the latest developments in electrochemical energy storage device technology In Novel Electrochemical Energy Storage Devices, an accomplished team of authors delivers a thorough examination of the latest developments in the electrode and cell configurations of lithium-ion batteries and electrochemical capacitors. Several kinds of newly developed devices are introduced, with information about their theoretical bases, materials, fabrication technologies, design considerations, and implementation presented. You’ll learn about the current challenges facing the industry, future research trends likely to capture the imaginations of researchers and professionals working in industry and academia, and still-available opportunities in this fast-moving area. You’ll discover a wide range of new concepts, materials, and technologies that have been developed over the past few decades to advance the technologies of lithium‐ion batteries, electrochemical capacitors, and intelligent devices. Finally, you’ll find solutions to basic research challenges and the technologies applicable to energy storage industries. Readers will also benefit from the inclusion of: A thorough introduction to energy conversion and storage, and the history and classification of electrochemical energy storage An exploration of materials and fabrication of electrochemical energy storage devices, including categories, EDLCSs, pseudocapacitors, and hybrid capacitors A practical discussion of the theory and characterizations of flexible cells, including their mechanical properties and the limits of conventional architectures A concise treatment of the materials and fabrication technologies involved in the manufacture of flexible cells Perfect for materials scientists, electrochemists, and solid-state chemists, Novel Electrochemical Energy Storage Devices will also earn a place in the libraries of applied physicists, and engineers in power technology and the electrotechnical industry seeking a one-stop reference for portable and smart electrochemical energy storage devices.




Vanadium-Based Nanomaterials for Electrochemical Energy Storage


Book Description

This book presents a comprehensive review of recent developments in vanadium-based nanomaterials for next-generation electrochemical energy storage. The basic electrochemical energy storage and conversion equipment are elaborated, and the vanadium-based nanomaterials of the synthesis approaches, characterizations, electrochemical storage mechanisms, and performance optimization tactics are discussed. Examples are taken from various chemical energy storage devices to expound the functions of advanced vanadium-based nanomaterials for specific applications. Finally, various challenges and perspectives on vanadium-based nanomaterial development as an emerging energy storage solution are considered.




Sustainable Materials for Next Generation Energy Devices


Book Description

Sustainable Materials for Next Generation Energy Devices: Challenges and Opportunities presents the latest state-of-the-art knowledge and innovation related to environmentally-friendly functional materials that can be developed for, and employed in, producing a feasible next generation of energy storage and conversion devices. The book is broken up into three sections, covering Energy Storage, Energy Conversion and Advanced Concepts. It will be an important reference for researchers, engineers and students who want to gain extensive knowledge in green and/or sustainable functional materials and their applications. Provides a concise resource for readers interested in sustainable and green functional materials for energy conversion and storage devices Emphasizes sustainable and green concepts in the design of energy devices based on renewable functional materials Presents a survey of both the challenges and opportunities available for renewable functional materials in the development of energy devices




Electrochemical Devices for Energy Storage Applications


Book Description

This book explores a wide range of energy storage devices, such as a lithium ion battery, sodium ion battery, magnesium ion battery and supercapacitors. Providing a comprehensive review of the current field, it also discusses the history of these technologies and introduces next-generation rechargeable batteries and supercapacitors. This book will serve as a valuable reference for researchers working with energy storage technologies across the fields of physics, chemistry, and engineering. Features: • Edited by established authorities in the field, with chapter contributions from subject area specialists • Provides a comprehensive review of field • Up to date with the latest developments and research