Nitrogen Capture


Book Description

This monograph provides an account of how the synthetic nitrogen industry became the forerunner of the 20th-century chemical industry in Europe, the United States and Asia. Based on an earlier SpringerBrief by the same author, which focused on the period of World War I, it expands considerably on the international aspects of the development of the synthetic nitrogen industry in the decade and a half following the war, including the new technologies that rivalled the Haber-Bosch ammonia process. Travis describes the tremendous global impact of fixed nitrogen (as calcium cyanamide and ammonia), including the perceived strategic need for nitrogen (mainly for munitions), and, increasingly, its role in increasing crop yields, including in Italy under Mussolini, and in the Soviet Union under Stalin. The author also reviews the situation in Imperial Japan, including the earliest adoption of the Italian Casale ammonia process, from 1923, and the role of fixed nitrogen in the industrialization of colonial Korea from the late 1920s. Chemists, historians of science and technology, and those interested in world fertilizer production and the development of chemical industry during the first four decades of the twentieth century will find this book of considerable value.










Electron Capture from Atomic Nitrogen by Protons


Book Description

The total Oppenheimer-Brinkman-Kramers (OBK) cross sections for 1s-, 2s-, and 2p-orbital electron capture from atomic nitrogen by protons are adjusted to correspond to capture from N2 by deuterons, and are compared with recent measurements of Berkner et al. Calculated cross sections for 1s capture are dominant above 3 MeV, and the total OBK cross section still exceeds the measured cross section at the deuteron energy of 21.5 MeV.




The Molecular and Physiological Basis of Nutrient Use Efficiency in Crops


Book Description

Efforts to increase efficient nutrient use by crops are of growing importance as the global demand for food, fibre and fuel increases and competition for resources intensifies. The Molecular and Physiological Basis of Nutrient Use Efficiency in Crops provides both a timely summary of the latest advances in the field as well as anticipating directions for future research. The Molecular and Physiological Basis of Nutrient Use Efficiency in Crops bridges the gap between agronomic practice and molecular biology by linking underpinning molecular mechanisms to the physiological and agronomic aspects of crop yield. These chapters provide an understanding of molecular and physiological mechanisms that will allow researchers to continue to target and improve complex traits for crop improvement. Written by leading international researchers, The Molecular and Physiological Basis of Nutrient Use Efficiency in Crops will be an essential resource for the crop science community for years to come. Special Features: coalesces current knowledge in the areas of efficient acquisition and utilization of nutrients by crop plants with emphasis on modern developments addresses future directions in crop nutrition in the light of changing climate patterns including temperature and water availability bridges the gap between traditional agronomy and molecular biology with focus on underpinning molecular mechanisms and their effects on crop yield includes contributions from a leading team of global experts in both research and practical settings







Managing Nitrogen for Crop Production


Book Description

Among crop nutrients, nitrogen has the most complex chemistry and behavior in soil, gives the largest yield responses, and is the most difficult to manage. Managing Nitrogen in Crop Production condenses the latest research and thinking from leading experts in nitrogen. The result will increase your understanding of nitrogen and your odds of managing it successfully.




WHO Guidelines for Indoor Air Quality


Book Description

This book presents WHO guidelines for the protection of public health from risks due to a number of chemicals commonly present in indoor air. The substances considered in this review, i.e. benzene, carbon monoxide, formaldehyde, naphthalene, nitrogen dioxide, polycyclic aromatic hydrocarbons (especially benzo[a]pyrene), radon, trichloroethylene and tetrachloroethylene, have indoor sources, are known in respect of their hazardousness to health and are often found indoors in concentrations of health concern. The guidelines are targeted at public health professionals involved in preventing health risks of environmental exposures, as well as specialists and authorities involved in the design and use of buildings, indoor materials and products. They provide a scientific basis for legally enforceable standards.




Process Design Manual for Nitrogen Control


Book Description




Nitrogen Fixation


Book Description

Biological nitrogen fixation (BNF), the process by which gaseous N2 is converted into ammonia (NH3) via the enzyme nitrogenase, is crucial for the availability of nitrogen (N) in the terrestrial ecosystem. Some bacteria have the remarkable capacity to fix atmospheric nitrogen to ammonia under ambient conditions, a reaction only mimicked on an industrial scale by a chemical process. This microbiological process converts atmospheric nitrogen into a plant-usable form, thus decreasing the need to use chemical fertilizers in crop production. Chapters in this volume cover different aspects of this fantastic phenomenon, including biofertilizer, organic nitrogen in agricultural systems, nitrogen fertilization for sustainable crop production, and others. This book is designed for researchers, students and general readers.