Nitrogen Fixation in Bacteria and Higher Plants


Book Description

Our knowledge of the biochemistry and biophysics of dinitrogen fixa tion has developed rapidly in the 15 years since the first N2-fixing enzyme system was successfully extracted from a bacterium. This peri od has produced a literature that now describes the N2 fixation reac tion and the nitrogenase enzyme itself in sophisticated terms, though a detailed reaction mechanism at the chemical level has not yet emerged. It is the purpose of the present monograph to present an in-depth re view, analysis, and integration of this research as is possible with a non-contributed publication and to relate this work to considera tions of N2 fixation that reach beyond the confines of the biochem ist's laboratory. The first section is directed as much toward the general science read er as toward the specialist. It covers the agricultural origins of man's interest in N2 fixation and also pertinent areas of taxonomy, physiology, and evolution. Ecological aspects of the subject include a comprehensive evaluation of the nitrogen cycle leading to a sub stantially greater estimate of the rate of global N2 fixation than previous ones. The treatment is of a survey fashion, in part to pro vide a general over-view of N2 fixation and in part to provide context for the biochemistry and biophysics that follow in the second section.




Symbiotic Nitrogen Fixation


Book Description

During the past three decades there has been a large amount of research on biological nitrogen fixation, in part stimulated by increasing world prices of nitrogen-containing fertilizers and environmental concerns. In the last several years, research on plant--microbe interactions, and symbiotic and asymbiotic nitrogen fixation has become truly interdisciplinary in nature, stimulated to some degree by the use of modern genetic techniques. These methodologies have allowed us to make detailed analyses of plant and bacterial genes involved in symbiotic processes and to follow the growth and persistence of the root-nodule bacteria and free-living nitrogen-fixing bacteria in soils. Through the efforts of a large number of researchers we now have a better understanding of the ecology of rhizobia, environmental parameters affecting the infection and nodulation process, the nature of specificity, the biochemistry of host plants and microsymbionts, and chemical signalling between symbiotic partners. This volume gives a summary of current research efforts and knowledge in the field of biological nitrogen fixation. Since the research field is diverse in nature, this book presents a collection of papers in the major research area of physiology and metabolism, genetics, evolution, taxonomy, ecology, and international programs.




Nitrogen Fixation in Tropical Cropping Systems


Book Description

Nitrogen fixation by leguminous plants is especially important when farmers are trying to minimise fertilizer use for cost or environmental reasons. This second edition of the highly successful book, first published in 1991, contains thoroughly updated and revised material on the theory and practice of nitrogen fixation in tropical cropping systems.




Biological Nitrogen Fixation


Book Description

Phylogenetic classification of nitrogen-fixing organisms. Physiology of nitrogen fixation in free-living heterotrophs. Nitrogen fixation by photosynthetic bacteria. Nitrogen fixation in cyanobacteria. Nitrogen fixation by methanogenic bacteria. Associative nitrogen-fixing bacteria. Actinorhizal symbioses. Ecology of bradyrhizobium and rhizobium. The rhizobium infection process. Physiology of nitrogen-fixing legume nodules: compartments, and functions. Hydrogen cycling in symbiotic bacteria. Evolution of nitrogen-fixing symbioses. The rhizobium symbiosis of the nonlegume parasponia. Genetic analysis of rhizobium nodulation. Nodulins in root nodule development. Plant genetics of symbiotic nitrogen fixation. Molecular genetics of bradyrhizobium symbioses. The enzymology of molybdenum-dependent nitrogen fixation. Alternative nitrogen fixation systems. Biochemical genetics of nitrogenase. Regulation of nitrogen fixation genes in free-living and symbiotic bacteria. Isolated iron-molybdenum cofactor of nitrogenase.




Nitrogen Fixation in Plants


Book Description

THE IMPORTANCE OF NITROGEN FIXATION ON MANAGED AND NATURAL ECOSYSTEMS.




Nitrogen Fixation in Agriculture, Forestry, Ecology, and the Environment


Book Description

Sustainability has a major part to play in the global challenge of continued development of regions, countries, and continents all around the World and biological nitrogen fixation has a key role in this process. This volume begins with chapters specifically addressing crops of major global importance, such as soybeans, rice, and sugar cane. It continues with a second important focus, agroforestry, and describes the use and promise of both legume trees with their rhizobial symbionts and other nitrogen-fixing trees with their actinorhizal colonization. An over-arching theme of all chapters is the interaction of the plants and trees with microbes and this theme allows other aspects of soil microbiology, such as interactions with arbuscular mycorrhizal fungi and the impact of soil-stress factors on biological nitrogen fixation, to be addressed. Furthermore, a link to basic science occurs through the inclusion of chapters describing the biogeochemically important nitrogen cycle and its key relationships among nitrogen fixation, nitrification, and denitrification. The volume then provides an up-to-date view of the production of microbial inocula, especially those for legume crops.




Symbiotic Nitrogen Fixation Technology


Book Description

Collection, isolation and maintenance of Rhizobia and Frankia; Colletion, cultivation and maintenance of azolla; Collection, isolation, cultivation and maintenance of associative N2-fixing bacteria; Fluorescence methods for study of Rhizobium in culture and in situ; Serological techniques for Brabyrhizobium and Rhizobium identification; Enzyme-linked immunosorbent assay (ELISA) for the detection and identification of Rhizobium strains; Use of Intrinsic culture and antibiotic resistance for Rhizobium Study; Isolation and identification of genetically marked strains of nitrogen-fixing microsymbionts of soybens; Measurement of nitrogen fixation by direct means; Measurement of biological fixation using acetylene reduction; Measuring ureides; Evaluation of nitrogen fixation by legumes in the greenhouse and growth chamber; Principles and practice of field designs to evaluate symbiotic nitrogen fixation; Production and quality control of inoculants; Role of culture collectios in biological nitrogen fixation.




Advances in Biology and Ecology of Nitrogen Fixation


Book Description

Biological nitrogen fixation has essential role in N cycle in global ecosystem. Several types of nitrogen fixing bacteria are recognized: the free-living bacteria in soil or water; symbiotic bacteria making root nodules in legumes or non-legumes; associative nitrogen fixing bacteria that resides outside the plant roots and provides fixed nitrogen to the plants; endophytic nitrogen fixing bacteria living in the roots, stems and leaves of plants. In this book there are 11 chapters related to biological nitrogen fixation, regulation of legume-rhizobium symbiosis, and agriculture and ecology of biological nitrogen fixation, including new models for autoregulation of nodulation in legumes, endophytic nitrogen fixation in sugarcane or forest trees, etc. Hopefully, this book will contribute to biological, ecological, and agricultural sciences.




Nitrogen-fixing Actinorhizal Symbioses


Book Description

For researchers and graduates with any interest in plant or soil sciences, this fascinating study will be a godsend – it’s the complete state of the art with regard to actinorhizal symbioses. The self-contained sixth volume of a comprehensive series on nitrogen fixation, it includes chapters that deal with all aspects of this symbiosis between actinorhizal plants and nitrogen-fixing bacteria. It also contains information both about symbionts and their ecological role and use. Other chapters tackle the global distribution of different actinorhizal plants and their microsymbionts and how this impacts the question of co-evolution of the micro- and macrosymbionts as well as comparing the actinorhizal and leguminous symbioses. No other book provides the up-to-date and in-depth coverage of this volume.




Symbiotic Nitrogen Fixation in Plants


Book Description

Genetical aspects and taxonomy; Quality of legume inoculants; Field experiments on nitrogen fixation by nodulated legumes; Legume nitrogen fixation and the environment; Nitrogen fixing symbioses in non-leguminous plants.