Agrindex


Book Description




Canadiana


Book Description




Essential Plant Nutrients


Book Description

This book explores the agricultural, commercial, and ecological future of plants in relation to mineral nutrition. It covers various topics regarding the role and importance of mineral nutrition in plants including essentiality, availability, applications, as well as their management and control strategies. Plants and plant products are increasingly important sources for the production of energy, biofuels, and biopolymers in order to replace the use of fossil fuels. The maximum genetic potential of plants can be realized successfully with a balanced mineral nutrients supply. This book explores efficient nutrient management strategies that tackle the over and under use of nutrients, check different kinds of losses from the system, and improve use efficiency of the plants. Applied and basic aspects of ecophysiology, biochemistry, and biotechnology have been adequately incorporated including pharmaceuticals and nutraceuticals, agronomical, breeding and plant protection parameters, propagation and nutrients managements. This book will serve not only as an excellent reference material but also as a practical guide for readers, cultivators, students, botanists, entrepreneurs, and farmers.




Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives II


Book Description

This book presents the state-of-the-art in plant ecophysiology. With a particular focus on adaptation to a changing environment, it discusses ecophysiology and adaptive mechanisms of plants under climate change. Over the centuries, the incidence of various abiotic stresses such as salinity, drought, extreme temperatures, atmospheric pollution, metal toxicity due to climate change have regularly affected plants and, and some estimates suggest that environmental stresses may reduce the crop yield by up to 70%. This in turn adversely affects the food security. As sessile organisms, plants are frequently exposed to various environmental adversities. As such, both plant physiology and plant ecophysiology begin with the study of responses to the environment. Provides essential insights, this book can be used for courses such as Plant Physiology, Environmental Science, Crop Production and Agricultural Botany. Volume 2 provides up-to-date information on the impact of climate change on plants, the general consequences and plant responses to various environmental stresses.




Agricultural Implications of the Fukushima Nuclear Accident (III)


Book Description

This open access book presents the findings from on-site research into radioactive cesium contamination in various agricultural systems affected by the Fukushima Daiichi Nuclear Power Plant accident in March 2011. This third volume in the series reports on studies undertaken at contaminated sites such as farmland, forests, and marine and freshwater environments, with a particular focus on livestock, wild plants and mushrooms, crops, and marine products in those environments. It also provides additional data collected in the subsequent years to show how the radioactivity levels in agricultural products and their growing environments have changed with time and the route by which radioactive materials entered agricultural products as well as their movement between different components (e.g., soil, water, and trees) within an environmental system (e.g., forests). The book covers various topics, including radioactivity testing of food products; decontamination trials for rice and livestock production; the state of contamination in, trees, mushrooms, and timber; the dynamics of radioactivity distribution in paddy fields and upland forests; damage incurred by the forestry and fishery industries; and the change in consumers’ attitudes. Chapter 19 introduces a real-time radioisotope imaging system, a pioneering technique to visualize the movement of cesium in soil and in plants. This is the only book to provide systematic data on the actual change of radioactivity, and as such is of great value to all researchers who wish to understand the effect of radioactive fallout on agriculture. In addition, it helps the general public to better understand the issues of radio-contamination in the environment. The project is ongoing; the research groups from the Graduate School of Agricultural and Life Sciences of The University of Tokyo continue their work in the field to further evaluate the long-term effects of the Fukushima accident.




Plant Growth-Promoting Microbes for Sustainable Biotic and Abiotic Stress Management


Book Description

Abiotic and biotic stress factors, including drought, salinity, waterlog, temperature extremes, mineral nutrients, heavy metals, plant diseases, nematodes, viruses, and diseases, adversely affect growth as well as yield of crop plants worldwide. Plant growth-promoting microorganisms (PGPM) are receiving increasing attention from agronomists and environmentalists as candidates to develop an effective, eco-friendly, and sustainable alternative to conventional agricultural (e.g., chemical fertilizers and pesticide) and remediation (e.g., chelators-enhanced phytoremediation) methods employed to deal with climate change-induced stresses. Recent studies have shown that plant growth-promoting bacteria (PGPB), rhizobia, arbuscular mycorrhizal fungi (AMF), cyanobacteria have great potentials in the management of various agricultural and environmental problems. This book provides current research of biofertilizers and the role of microorganisms in plant health, with specific emphasis on the mitigating strategies to combat plant stresses.




Plant Abiotic Stress Tolerance


Book Description

Plants have to manage a series of environmental stresses throughout their entire lifespan. Among these, abiotic stress is the most detrimental; one that is responsible for nearly 50% of crop yield reduction and appears to be a potential threat to global food security in coming decades. Plant growth and development reduces drastically due to adverse effects of abiotic stresses. It has been estimated that crop can exhibit only 30% of their genetic potentiality under abiotic stress condition. So, this is a fundamental need to understand the stress responses to facilitate breeders to develop stress resistant and stress tolerant cultivars along with good management practices to withstand abiotic stresses. Also, a holistic approach to understanding the molecular and biochemical interactions of plants is important to implement the knowledge of resistance mechanisms under abiotic stresses. Agronomic practices like selecting cultivars that is tolerant to wide range of climatic condition, planting date, irrigation scheduling, fertilizer management could be some of the effective short-term adaptive tools to fight against abiotic stresses. In addition, “system biology” and “omics approaches” in recent studies offer a long-term opportunity at the molecular level in dealing with abiotic stresses. The genetic approach, for example, selection and identification of major conditioning genes by linkage mapping and quantitative trait loci (QTL), production of mutant genes and transgenic introduction of novel genes, has imparted some tolerant characteristics in crop varieties from their wild ancestors. Recently research has revealed the interactions between micro-RNAs (miRNAs) and plant stress responses exposed to salinity, freezing stress and dehydration. Accordingly transgenic approaches to generate stress-tolerant plant are one of the most interesting researches to date. This book presents the recent development of agronomic and molecular approaches in conferring plant abiotic stress tolerance in an organized way. The present volume will be of great interest among research students and teaching community, and can also be used as reference material by professional researchers.




Plant Breeding in the Omics Era


Book Description

​The field of plant breeding has grown rapidly in the last decade with breakthrough research in genetics and genomics, inbred development, population improvement, hybrids, clones, self-pollinated crops, polyploidy, transgenic breeding and more. This book discusses the latest developments in all these areas but explores the next generation of needs and discoveries including omics beyond genomics, cultivar seeds and intellectual and property rights. This book is a leading-edge publication of the latest results and forecasts important areas of future needs and applications.​







Plant Performance Under Environmental Stress


Book Description

Global climate change is bound to create a number of abiotic and biotic stresses in the environment, which would affect the overall growth and productivity of plants. Like other living beings, plants have the ability to protect themselves by evolving various mechanisms against stresses, despite being sessile in nature. They manage to withstand extremes of temperature, drought, flooding, salinity, heavy metals, atmospheric pollution, toxic chemicals and a variety of living organisms, especially viruses, bacteria, fungi, nematodes, insects and arachnids and weeds. Incidence of abiotic stresses may alter the plant-pest interactions by enhancing susceptibility of plants to pathogenic organisms. These interactions often change plant response to abiotic stresses. Plant growth regulators modulate plant responses to biotic and abiotic stresses, and regulate their growth and developmental cascades. A number of physiological and molecular processes that act together in a complex regulatory network, further manage these responses. Crosstalk between autophagy and hormones also occurs to develop tolerance in plants towards multiple abiotic stresses. Similarly, biostimulants, in combination with correct agronomic practices, have shown beneficial effects on plant metabolism due to the hormonal activity that stimulates different metabolic pathways. At the same time, they reduce the use of agrochemicals and impart tolerance to biotic and abiotic stress. Further, the use of bio- and nano-fertilizers seem to hold promise to improve the nutrient use efficiency and hence the plant yield under stressful environments. It has also been shown that the seed priming agents impart stress tolerance. Additionally, tolerance or resistance to stress may also be induced by using specific chemical compounds such as polyamines, proline, glycine betaine, hydrogen sulfide, silicon, β-aminobutyric acid, γ-aminobutyric acid and so on. This book discusses the advances in plant performance under stressful conditions. It should be very useful to graduate students, researchers, and scientists in the fields of botanical science, crop science, agriculture, horticulture, ecological and environmental science.