Phosphorus and Nitrogen Removal from Municipal Wastewater


Book Description

This valuable new book offers practical guidance regarding the design and operation of systems for reducing effluent nitrogen and phosphorus. The principles of nitrogen and phosphorus removal are discussed, including sources of nitrogen and phosphorus in wastewater, removal options, nitrogen and phosphorus transformations in treatment, process selection, and treatment. The book also covers the design and operation of nitrogen and phosphorus removal systems, including system options, system design, facility design, facility costs, and operation. Practical case studies are provided as examples of successful system implementations that may be able to help you decide what will work best in your plant.




Phosphorus and Nitrogen Removal from Municipal Wastewater


Book Description

"This valuable new book offers practical guidance regarding the design and operation of systems for reducing effluent nitrogen and phosphorus. The principles of nitrogen and phosphorus removal are discussed, including sources of nitrogen and phosphorus in wastewater, removal options, nitrogen and phosphorus transformations in treatment, process selection, and treatment. The book also covers the design and operation of nitrogen and phosphorus removal systems, including system options, system design, facility design, facility costs, and operation. Practical case studies are provided as examples of successful system implementations that may be able to help you decide what will work best in your plant."--Provided by publisher.




A-B processes: Towards Energy Self-sufficient Municipal Wastewater Treatment


Book Description

The principle of the conventional activated sludge (CAS) for municipal wastewater treatment is primarily based on biological oxidation by which organic matters are converted to biomass and carbon dioxide. After more than 100 years’ successful application, the CAS process is receiving increasing critiques on its high energy consumption and excessive sludge generation. Currently, almost all municipal wastewater treatment plants with the CAS as a core process are being operated in an energy-negative fashion. To tackle such challenging situations, there is a need to re-examine the present wastewater treatment philosophy by developing and adopting novel process configurations and emerging technologies. The solutions going forward should rely on the ways to improve direct energy recovery from wastewater, while minimizing in-plant energy consumption. This book begins with a critical overview of the energy situation and challenges in current municipal wastewater treatment plants, showing the necessity of the paradigm shift from removal to recovery in terms of energy and resource. As such, the concept of A-B process is discussed in detail in the book. It appears that various A-B process configurations are able to provide possible engineering solutions in which A-stage is primarily designed for COD capture with the aim for direct anaerobic treatment without producing excessive biosludge, while B-stage is designated for nitrogen removal. Making the wastewater treatment energy self-sustainable is obviously of global significance and eventually may become a game changer for the global market of the municipal wastewater reclamation technology. The principal audiences include practitioners, professionals, university researchers, undergraduate and postgraduate students who are interested and specialized in municipal wastewater treatment and process design, environmental engineering, and environmental biotechnology.




Greenhouse Gas Emission and Mitigation in Municipal Wastewater Treatment Plants


Book Description

The wide adoption of wastewater treatment processes and use of novel technologies for improvement of nitrogen and phosphorus removals from wastewater have been introduced to meet stringent discharge standards. Municipal wastewater treatment plants (MWWTPs) are one of major contributors to the increase in the global GHG emissions and therefore it is necessary to carry out intensive studies on quantification, assessment and characterization of GHG emissions in wastewater treatment plants, on the life cycle assessment from GHG emission prospective, and on the GHG mitigation strategies. Greenhouse Gas Emission and Mitigation in Municipal Wastewater Treatment Plants summarizes the recent development in studies of greenhouse gas emissions (N2O, CH4 and CO2) in MWWTPs. It also summarizes the development in life cycle assessment on GHG emissions in consideration of the energy usage in MWWTPs. The strategies in mitigating GHG emissions are discussed and the book provides an overview for researchers, students, water professionals and policy makers on GHG emission and mitigation in MWWTPS and industrial wastewater treatment processes. The book is a valuable resource for undergraduate and postgraduate students in the water, climate, and energy areas of research. It is also a useful reference source for water professionals, government policy makers, and research institutes.







Activated Sludge Models


Book Description

This book has been produced to give a total overview of the Activated Sludge Model (ASM) family at the start of 2000 and to give the reader easy access to the different models in their original versions. It thus presents ASM1, ASM2, ASM2d and ASM3 together for the first time. Modelling of activated sludge processes has become a common part of the design and operation of wastewater treatment plants. Today models are being used in design, control, teaching and research. Contents ASM3: Introduction, Comparison of ASM1 and ASM3, ASM3: Definition of compounds in the model, ASM3: Definition of processes in the Model, ASM3: Stoichiometry, ASM3: Kinetics, Limitations of ASM3, Aspects of application of ASM3, ASM3C: A Carbon based model, Conclusion ASM 2d: Introduction, Conceptual Approach, ASM 2d, Typical Wastewater Characteristics and Kinetic and Stoichiometric Constants, Limitations, Conclusion ASM 2: Introduction, ASM 2, Typical Wastewater Characteristics and Kinetic and Stoichiometric Constants, Wastewater Characterization for Activated Sludge Processes, Calibration of the ASM 2, Model Limitations, Conclusion, Bibliography ASM 1: Introduction, Method of Model Presentation, Model Incorporating Carbon Oxidation Nitrification and Denitrification, Characterization of Wastewater and Estimation of Parameter Values, Typical Parameter Ranges, Default Values, and Effects of Environmental Factors, Assumptions, Restrictions and Constraints, Implementation of the Activated Sludge Model Scientific and Technical Report No.9




The Combined Sharon/Anammox Process


Book Description

Wastewater treatment management, alongside many other industries, is seeking to attain a higher degree of sustainability for its processes by focusing on new technologies which minimise the consumption of resources or even recover them from the wastewater. Conventional removal of ammonium requires usually large amounts of energy for aeration and organic carbon for denitrification. This report focuses on making the nitrogen-removal process more sustainable. This can be achieved by a partial oxidation of ammonium to nitrite, after which the nitrate produced can be converted into nitrogen gas with the rest of ammonium under anoxic conditions. The treatment of nitrogen-rich water can be carried out beneficially by a combination of the Sharon process with the Anammox process. In this combined process less than 50% of the aeration energy is needed, no COD is required and an insignificant amount of sludge is produced. In this Report the potential of using this technology for the treatment of water arising from sludge treatment at a municipal wastewater treatment plant (WWTP) is evaluated and the results of the operation of the system are described in detail. This reject water contains a significant fraction of the N-load towards the wastewater treatment plant. The results are used in an economic evaluation of a potential full scale installation. The Combined Sharon/Anammox Process Report will provide an invaluable source of information for all those concerned with the efficient and sustainable treatment of wastewater including plant managers, process designers, consultants and researchers.




Nitrification and Denitrification in the Activated Sludge Process


Book Description

Nitrification and Denitrification in the Activated Sludge Process, the first in a series on the microbiology of wastewater treatment, comprises the critical topics of cost-effective operation, permit compliance, process control, and troubleshooting in wastewater treatment plants. Avoiding the technical jargon, chemical equations, and kinetics that typically accompany such texts, Nitrification and Denitrification in the Activated Sludge Process directly addresses plant operators and technicians, providing necessary information for understanding the microbiology and biological conditions that occur in the treatment process. Of special interest to wastewater treatment plant operators are the bacteria that degrade nitrogenous wastes–the nitrifying bacteria–and the bacteria that degrade carbonaceous wastes–the cBOD-removing bacteria. Both groups of bacteria need to be routinely monitored and operational conditions favorably adjusted to ensure desired nitrification. Each chapter in this groundbreaking study offers a better understanding of the importance of nitrification and denitrification and the bacteria involved in these crucial processes. Chapters include: Organotrophs The Wastewater Nitrogen Cycle Nitrite Ion Accumulation Dissolved Oxygen Denitrifying Bacteria Gaseous End Products Free Molecular Oxygen The Occurrence of Denitrification




Biological Wastewater Treatment


Book Description

For information on the online course in Biological Wastewater Treatment from UNESCO-IHE, visit: http://www.iwapublishing.co.uk/books/biological-wastewater-treatment-online-course-principles-modeling-and-design Over the past twenty years, the knowledge and understanding of wastewater treatment have advanced extensively and moved away from empirically-based approaches to a first principles approach embracing chemistry, microbiology, physical and bioprocess engineering, and mathematics. Many of these advances have matured to the degree that they have been codified into mathematical models for simulation with computers. For a new generation of young scientists and engineers entering the wastewater treatment profession, the quantity, complexity and diversity of these new developments can be overwhelming, particularly in developing countries where access is not readily available to advanced level tertiary education courses in wastewater treatment. Biological Wastewater Treatment addresses this deficiency. It assembles and integrates the postgraduate course material of a dozen or so professors from research groups around the world that have made significant contributions to the advances in wastewater treatment. The book forms part of an internet-based curriculum in biological wastewater treatment which also includes: Summarized lecture handouts of the topics covered in book Filmed lectures by the author professors Tutorial exercises for students self-learning Upon completion of this curriculum the modern approach of modelling and simulation to wastewater treatment plant design and operation, be it activated sludge, biological nitrogen and phosphorus removal, secondary settling tanks or biofilm systems, can be embraced with deeper insight, advanced knowledge and greater confidence.




Innovative Wastewater Treatment & Resource Recovery Technologies: Impacts on Energy, Economy and Environment


Book Description

This book introduces the 3R concept applied to wastewater treatment and resource recovery under a double perspective. Firstly, it deals with innovative technologies leading to: Reducing energy requirements, space and impacts; Reusing water and sludge of sufficient quality; and Recovering resources such as energy, nutrients, metals and chemicals, including biopolymers. Besides targeting effective C,N&P removal, other issues such as organic micropollutants, gases and odours emissions are considered. Most of the technologies analysed have been tested at pilot- or at full-scale. Tools and methods for their Economic, Environmental, Legal and Social impact assessment are described. The 3R concept is also applied to Innovative Processes design, considering different levels of innovation: Retrofitting, where novel units are included in more conventional processes; Re-Thinking, which implies a substantial flowsheet modification; and Re-Imagining, with completely new conceptions. Tools are presented for Modelling, Optimising and Selecting the most suitable plant layout for each particular scenario from a holistic technical, economic and environmental point of view.