NMR Methods for the Investigation of Structure and Transport


Book Description

Methods of nuclear magnetic resonance (NMR) are increasingly applied in engineering sciences. The book summarizes research in the field of chemical and process engineering performed at the Karlsruhe Institute of Technology (KIT). Fundamentals of the methods are exposed for readers with an engineering background. Applications cover the fields of mechanical process engineering (filtration, solid-liquid separation, powder mixing, rheometry), chemical process engineering (trickle-bed reactor, ceramic sponges), bioprocess engineering (biofilm growth), and food process engineering (microwave heating, emulsions). Magnetic Resonance Imaging (MRI) as well as low-field NMR are covered with notes on hardware. Emphasis is placed on quantitative data analysis and image processing.







Optimizing NMR Methods for Structure Elucidation


Book Description

This book is aimed at informing organic chemists and natural products chemists on the use of NMR for structure elucidation to enable them to ensure they yield the most reliable possible data in the minimum possible time. It covers the latest pulse sequences, acquisition and processing methods, practical areas not covered in most texts e.g. detailed consideration of the relative advantages and disadvantages of different pulse sequences, choosing acquisition and processing parameters to get the best possible data in the least possible time, pitfalls to avoid and how to minimize the risks of getting wrong structures. Useful in industrial, pharma or research environments, this reference book is for anyone involved with organic chemistry research and, in particular, natural products research requiring advice for getting the best results from the NMR facilities.




NMR Methods for a Comprehensive and Fast Characterisation of Mass Transport in Porous Materials


Book Description

Nuclear Magnetic Resonance (NMR) is a powerful tool for non-invasively investigating static and dynamic properties of fluids inside complex and opaque structures. Various properties such as substance distribution, temperature, flow velocities, diffusion properties and much more can be imaged three-dimensionally. The Magnetic Resonance Velocimetry (MRV) allows for the in situ analysis of the local flow velocity of fluids. Such an analysis characterises mass transport properties and helps to validate or improve numerical predictions for porous media. However, the benefit of such validations is lowered by several problems worsening the measurement accuracy. This work addresses systematic errors and the influence of noise, which may reduce the accuracy of MRV measurements. Different techniques are described to minimise or correct displacement and phase errors. In particular, the so-called dual-Velocity ENCoding (VENC) technique is considered. It is described how the ratio between low- and high-VENC value should be chosen in order to obtain the highest possible improvement of the Velocity-to-Noise Ratio (VNR). A new multi-echo MRV sequence is proposed as a compromise between VNR, total measurement time, spatial resolution and displacement errors. For improved VNR, a dual-VENC encoding scheme was used with different velocity encoding steps for the individual echoes. The repetition time TR was optimised to achieve a further VNR improvement. The proposed MRV sequence was implemented on a 7 Tesla preclinical Magnetic Resonance Imaging (MRI) system and used to measure the three-directional flow velocity of water in an Open Cell Foam (OCF) structure and a honeycomb structure with three-dimensional isotropic spatial resolution. The velocity measurements performed for the OCF structure were used for cross-validation with Computional Fluid Dynamics (CFD) simulations. A technique is described to match MRV and CFD velocity maps and their agreement was evaluated by a similarity index. The influence of different artefacts on the similarity index is evaluated in detail. To better understand the origin of different artefacts, the surface and the inside of the OCF structure were analysed separately.




Methods for Structure Elucidation by High-Resolution NMR


Book Description

Nuclear Magnetic Resonance Spectroscopy (NMR) is now widely regarded as having evolved into a subscience. The field has become immensely diverse, ranging from medical use through solid state NMR to liquid state applications, with countless books and scientific journals devoted to these topics. Theoretical as well as experimental advance continues to be rapid, and has in fact accelerated by many novel innovations. This multi-authored book focuses on the latest developments in the rapidly evolving field of high resolution NMR, specifically with a view to applications on the structure elucidation of organic molecules of moderate molecular weight. Conceptually it differs from basic educational texts, hard-core scientific papers and regular review articles in that each chapter may be regarded as the authors' personal account of their special insights and results that crystallised after several years of research into a given topic. The book revolves around several themes and offers a handful of scientific "gems" of various colors, reflecting the great diversity of NMR. It contains 16 loosely connected chapters written by some of today's most accomplished NMR scientists in the world. Each chapter is a unique synthesis of the authors' previous research results in the given field, and thus projects special insights. Much emphasis has been given to the latest developments in NMR, in particular to selective pulses and pulsed field gradients. As a part of the series "Analytical Spectroscopy Library", with subsequent editions coming along this book should provide a platform for future research accounts of similar flavor. The material is presented in a mostly non-mathematical fashion, and is intended mainly for chemists, application NMR scientists and students with already some background in NMR. Some of the chapters slightly overlap in the discussed topics, which is particularly exciting in terms of gaining insight into the same area from different angles.




Diffusion NMR of Confined Systems


Book Description

With the increasing role of porous solids in conventional and newly emerging technologies, there is an urgent need for a deeper understanding of fluid behaviour confined to pore spaces of these materials especially with regard to their transport properties. From its early years, NMR has been recognized as a powerful experimental technique enabling direct access to this information. In the last two decades, the methodological development of different NMR techniques to assess dynamic properties of adsorbed ensembles has been progressed. This book will report on these recent advances and look at new broader applications in engineering and medicine. Having both academic and industrial relevance, this unique reference will be for specialists working in the research areas and for advanced graduate and postgraduate studies who want information on the versatility of diffusion NMR.




Structural Biology


Book Description

Over the years since NMR was first applied to solve problems in structural biology, it has undergonedramaticdevelopmentsinbothNMRinstrumenthardwareandmethodology. While it is established that NMR is one of the most powerful tools for understanding biological p- cesses at the atomic level, it has become increasingly difficult for authors and instructors to make valid decisions concerning the content and level for a graduate course of NMR in str- turalbiology. BecausemanyofthedetailsinpracticalNMRarenotdocumentedsystematically, students entering the field have to learn the experiments and methods through communication with other experienced students or experts. Often such a learning process is incomplete and unsystematic. This book is meant to be not only a textbook, but also a handbook for those who routinely use NMR to study various biological systems. Thus, the book is organized with experimentalists in mind, whether they are instructors or students. For those who have a little or no background in NMR structural biology, it is hoped that this book will provide sufficient perspective and insight. Those who are already experienced in NMR research may find new information or different methods that are useful to their research. Because understanding fundamental principles and concepts of NMR spectroscopy is essential for the application of NMR methods to research projects, the book begins with an introduction to basic NMR principles. While detailed mathematics and quantum mechanics dealing with NMR theory have been addressed in several well-known NMR books, Chapter 1 illustrates some of the fundamental principles and concepts of NMR spectroscopy in a more descriptiveandstraightforwardmanner.




Structural Biology of the Sequestration and Transport of Heavy Metal Toxins


Book Description

The overall goal of the research is to apply the methods of structural biology, which have been previously used primarily in biomedical applications, to bioremediation. The authors are doing this by using NMR spectroscopy to determine the structures of proteins involved in the bacterial mercury detoxification system. The research is based on the premise that the proteins encoded in the genes of the bacterial detoxification system are an untapped source of reagents and, more fundamentally, chemical strategies that can be used to remove heavy metal toxins from the environment. The initial goals are to determine the structures of the proteins of the bacterial mercury detoxification systems responsible for the sequestration and transport of the Hg(II) ions in to the cell where reduction to Hg(O) occurs. These proteins are meP, which is water soluble and can be investigated with multidimensional solution NMR methods, and merT, the transport protein in the membrane that requires solid-state NMR methods. As of June 1998, this report summarizes work after about one and half years of the three-year award. The authors have made significant accomplishments in three aspects of the NMR studies of the proteins of the bacterial mercury detoxification system.




Multidimensional NMR Methods for the Solution State


Book Description

The content of this volume has been added to eMagRes (formerly Encyclopedia of Magnetic Resonance) - the ultimate online resource for NMR and MRI. The literature of multidimensional NMR began with the publication of three papers in 1975, then nine in 1976 and fifteen in 1977, and now contains many tens of thousands of papers. Any attempt to survey the field must therefore necessarily be very selective, not to say partial. In assembling this handbook, the Editors have sought to provide both the new researcher and the established scientist with a solid foundation for the understanding of multidimensional NMR, a representative if inevitably limited survey of its applications, an authoritative account of classic techniques such as COSY, NOESY and TOSCY, and an account of the latest progress in the development of multidimensional techniques. This handbook is structured in four parts. The first opens with an historical introduction to, and a brief account of, the practicalities and applications of multidimensional NMR methods, followed by a definitive survey of their conceptual basis and a series of articles setting out the generic principles of methods for acquiring and processing multidimensional NMR data. In the second part, the main families of multidimensional techniques, arranged in approximate order of increasing complexity, are described in detail, from simple J-resolved spectroscopy through to the powerful heteronuclear 3D and 4D methods that now dominate the study of structural biology in solution. The third part offers and illustrative selection from the very wide range of applications of multidimensional NMR methods, including some of the most recent developments in protein NMR. Finally, the fourth part introduces the idea of multidimensional spectra containing non-frequency dimensions, in which properties such as diffusion and relaxation are correlated. About EMR Handbooks / eMagRes Handbooks The Encyclopedia of Magnetic Resonance (up to 2012) and eMagRes (from 2013 onward) publish a wide range of online articles on all aspects of magnetic resonance in physics, chemistry, biology and medicine. The existence of this large number of articles, written by experts in various fields, is enabling the publication of a series of EMR Handbooks / eMagRes Handbooks on specific areas of NMR and MRI. The chapters of each of these handbooks will comprise a carefully chosen selection of articles from eMagRes. In consultation with the eMagRes Editorial Board, the EMR Handbooks / eMagRes Handbooks are coherently planned in advance by specially-selected Editors, and new articles are written (together with updates of some already existing articles) to give appropriate complete coverage. The handbooks are intended to be of value and interest to research students, postdoctoral fellows and other researchers learning about the scientific area in question and undertaking relevant experiments, whether in academia or industry. Have the content of this Handbook and the complete content of eMagRes at your fingertips! Visit: www.wileyonlinelibrary.com/ref/eMagRes View other eMagRes publications here