No-Nonsense Algebra


Book Description

I have tutored many, many people in Math through Calculus, and I have found that if you start off with the basics and take things one step at a time - anyone can learn complex Math topics. This book has literally hundreds of example problems ranging in all levels of complexity. Each problem is broken down into bite-sized-chunks so that no one gets lost. This book will take anyone with no prior exposure to Algebra and raise their scores significantly!







Mastering Essential Math Skills


Book Description

Provides structure and guidance to the teacher by means of speed drills, review exercises, teacher tips, word problems and new material for each day.




Pre-Algebra Concepts


Book Description

Illustrated workbook for learning, practicing, and mastering pre-algebra mathematics.




Mastering Essential Math Skills


Book Description

Illustrated workbook for learning, practicing, and mastering elementary number theory in mathematics.




Problem Solving


Book Description

What good is math if you can't put it to good use? Studies show that problem solving is THE most neglected topic in most math programs. This book will ensure that the students develop their math critical thinking skills. Students will learn to apply whole numbers, fractions, decimals, and percents to real-life situations.




Street-Fighting Mathematics


Book Description

An antidote to mathematical rigor mortis, teaching how to guess answers without needing a proof or an exact calculation. In problem solving, as in street fighting, rules are for fools: do whatever works—don't just stand there! Yet we often fear an unjustified leap even though it may land us on a correct result. Traditional mathematics teaching is largely about solving exactly stated problems exactly, yet life often hands us partly defined problems needing only moderately accurate solutions. This engaging book is an antidote to the rigor mortis brought on by too much mathematical rigor, teaching us how to guess answers without needing a proof or an exact calculation. In Street-Fighting Mathematics, Sanjoy Mahajan builds, sharpens, and demonstrates tools for educated guessing and down-and-dirty, opportunistic problem solving across diverse fields of knowledge—from mathematics to management. Mahajan describes six tools: dimensional analysis, easy cases, lumping, picture proofs, successive approximation, and reasoning by analogy. Illustrating each tool with numerous examples, he carefully separates the tool—the general principle—from the particular application so that the reader can most easily grasp the tool itself to use on problems of particular interest. Street-Fighting Mathematics grew out of a short course taught by the author at MIT for students ranging from first-year undergraduates to graduate students ready for careers in physics, mathematics, management, electrical engineering, computer science, and biology. They benefited from an approach that avoided rigor and taught them how to use mathematics to solve real problems. Street-Fighting Mathematics will appear in print and online under a Creative Commons Noncommercial Share Alike license.







Proofs from THE BOOK


Book Description

According to the great mathematician Paul Erdös, God maintains perfect mathematical proofs in The Book. This book presents the authors candidates for such "perfect proofs," those which contain brilliant ideas, clever connections, and wonderful observations, bringing new insight and surprising perspectives to problems from number theory, geometry, analysis, combinatorics, and graph theory. As a result, this book will be fun reading for anyone with an interest in mathematics.




Book of Proof


Book Description

This book is an introduction to the language and standard proof methods of mathematics. It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity.