Noise and Vibration Mitigation for Rail Transportation Systems


Book Description

The book reports on the 11th International Workshop on Railway Noise, held on 9 – 13 September, 2013, in Uddevalla, Sweden. The event, which was jointly organized by the Competence Centre Chalmers Railway Mechanics (CHARMEC) and the Departments of Applied Mechanics and Applied Acoustics at Chalmers University of Technology in Gothenburg, Sweden, covered a broad range of topics in the field of railway noise and vibration, including: prospects, legal regulations and perceptions; wheel and rail noise; prediction, measurements and monitoring; ground-borne vibration; squeal noise and structure-borne noise; and aerodynamic noise generated by high-speed trains. Further topics included: resilient track forms; grinding, corrugation and roughness; and interior noise and sound barriers. This book, which consists of a collection of peer-reviewed papers originally submitted to the workshop, not only provides readers with an overview of the latest developments in the field, but also offers scientists and engineers essential support in their daily efforts to identify, understand and solve a number of problems related to railway noise and vibration, and to achieve their ultimate goal of reducing the environmental impact of railway systems.




Noise and Vibration Mitigation for Rail Transportation Systems


Book Description

This volume contains the contributions to the 10th International Workshop on Railway Noise, held October 18–22, 2010, in Nagahama, Japan, organized by the Railway Technical Research Institute (RTRI), Japan. With 11 sessions and 3 poster sessions, the workshop featured presentations by international leaders in the field of railway noise and vibration. All subjects relating to 1. prospects, legal regulation, and perception; 2. wheel and rail noise; 3. structure-borne noise and squeal noise; 4. ground-borne vibration; 5. aerodynamic noise and micro-pressure waves from tunnel portals; 6. interior noise and sound barriers; and 7. prediction, measurements, and monitoring are addressed here. This book is a useful “state-of-the-art” reference for scientists and engineers involved in solving environmental problems of railways.




Noise and Vibration Mitigation for Rail Transportation Systems


Book Description

This book reports on the 13th International Workshop on Railway Noise (IWRN13), held on September 16-20, 2019, in Ghent, Belgium. It gathers original peer-reviewed papers describing the latest developments in railway noise and vibration, as well as state-of-the-art reviews written by authoritative experts in the field. The different papers cover a broad range of railway noise and vibration topics, such as rolling noise, wheel squeal, noise perception, prediction methods, measurements and monitoring, and vehicle interior noise. Further topics include rail roughness, rail corrugation and grinding, high-speed rail and aerodynamic noise, structure-borne noise, ground-borne noise and vibration, and resilient track forms. Policy, criteria and regulation are also discussed. Offering extensive and timely information to both scientists and engineers, this book will help them in their daily efforts to identify, understand and solve problems related to railway noise and vibration, and to achieve the ultimate goal of reducing the environmental impact of railway systems.




Noise and Vibration Mitigation for Rail Transportation Systems


Book Description

This book reports on the 12th International Workshop on Railway Noise held on 12-16 September 2016 at Terrigal, Australia. It gathers peer-reviewed papers describing the latest developments in rail noise and vibration, as well as state-of-the-art reviews by distinguished experts in the field. The papers cover a broad range of rail noise topics including wheel squeal, policy, regulation and perception, wheel and rail noise, predictions, measurements and monitoring, interior noise, rail roughness, corrugation and grinding, high speed rail and aerodynamic noise, and structure-borne noise, ground-borne vibration and resilient track forms. It offers an essential reference-guide to both scientists and engineers in their daily efforts to identify, understand and solve a number of problems related to railway noise and vibration, and to achieve their ultimate goal of reducing the environmental impact of railway systems.




Noise and Vibration Mitigation for Rail Transportation Systems


Book Description

This book contains the presentations given during the 9th International Workshop on Railway Noise (IWRN9) which took place in Munich/Feldafing, Germany, on 4th to 8th September 2007. This workshop was organised by the Acoustics and Vibration Department of DB Systemtechnik, the technical engineering office of Deutsche Bahn AG. More than 120 participants from 17 countries followed the invitation to the wo- shop. This great response showed the continuing interest in an important topic of railway technology and offered the opportunity to present the recent results of intense worldwide activities to the international community of railway noise and vibration experts and to share knowledge as well as experience. Because an efficient transportation network is indispensable to handle the general mobility increase and road networks have reached their socio-ecological limits, the railway network is to be strengthened. For example the European Commission has given distinct political signals to get more passengers onto the railways. This policy represents a clear challenge for the next few decades not only for European railway companies: the considerable increase in mobility will lead to a doubling of the railway traffic volume within the next 10 to 20 years. To reduce the environmental impact, the Directive on the Assessment and M- agement of Environmental Noise has been put into force in Europe, aiming at avo- ing, preventing or reducing harmful effects of environmental noise on human health.







Noise and Vibration Mitigation for Rail Transportation Systems


Book Description

This book collects original peer-reviewed papers describing the latest developments in railway noise and vibration from the 14th International Workshop on Railway Noise (IWRN14), held on 7–9 December 2022, in Shanghai, China. It covers a broad range of railway noise and vibration topics, including high-speed rail and aerodynamic noise, wheel and rail noise, curving squeal noise, bridge noise, vehicle interior noise, structure-borne noise, and ground-borne vibration. Further topics such as resilient track forms, wheel out-of-round and polygonalization, rail roughness, corrugation and grinding, etc. are also covered. With the extensive and timely information offered, this book helps scientists and engineers in their daily efforts to identify, understand, and solve problems related to railway noise and vibration and to achieve the ultimate goal of minimizing the environmental impact of railway systems.




Railway Noise and Vibration


Book Description

Railways are an environmentally friendly means of transport well suited to modern society. However, noise and vibration are key obstacles to further development of the railway networks for high-speed intercity traffic, for freight and for suburban metros and light-rail. All too often noise problems are dealt with inefficiently due to lack of understanding of the problem. This book brings together coverage of the theory of railway noise and vibration with practical applications of noise control technology at source to solve noise and vibration problems from railways. Each source of noise and vibration is described in a systematic way: rolling noise, curve squeal, bridge noise, aerodynamic noise, ground vibration and ground-borne noise, and vehicle interior noise. Theoretical modelling approaches are introduced for each source in a tutorial fashion Practical applications of noise control technology are presented using the theoretical models Extensive examples of application to noise reduction techniques are included Railway Noise and Vibration is a hard-working reference and will be invaluable to all who have to deal with noise and vibration from railways, whether working in the industry or in consultancy or academic research. David Thompson is Professor of Railway Noise and Vibration at the Institute of Sound and Vibration Research, University of Southampton. He has worked in the field of railway noise since 1980, with British Rail Research in Derby, UK, and TNO Institute of Applied Physics in the Netherlands before moving to Southampton in 1996. He was responsible for developing the TWINS software for predicting rolling noise. Discusses fully the theoretical background and practical workings of railway noise Includes the latest research findings, brought together in one place Forms an extended case study in the application of noise control techniques




Track Design Handbook for Light Rail Transit


Book Description

TCRP report 155 provides guidelines and descriptions for the design of various common types of light rail transit (LRT) track. The track structure types include ballasted track, direct fixation ("ballastless") track, and embedded track. The report considers the characteristics and interfaces of vehicle wheels and rail, tracks and wheel gauges, rail sections, alignments, speeds, and track moduli. The report includes chapters on vehicles, alignment, track structures, track components, special track work, aerial structures/bridges, corrosion control, noise and vibration, signals, traction power, and the integration of LRT track into urban streets.