Book Description
A specially written review of all areas of noise and nonlinear in natural environments.
Author : Frank Moss
Publisher : Cambridge University Press
Page : 410 pages
File Size : 34,5 MB
Release : 1989-04-06
Category : Mathematics
ISBN : 0521352290
A specially written review of all areas of noise and nonlinear in natural environments.
Author : Frank Moss
Publisher : Cambridge University Press
Page : 298 pages
File Size : 19,82 MB
Release : 1989-04-06
Category : Mathematics
ISBN : 0521352657
A specially written review of all areas of noise and nonlinear in natural environments.
Author : Arnaud Debussche
Publisher : Springer
Page : 175 pages
File Size : 38,16 MB
Release : 2013-10-01
Category : Mathematics
ISBN : 3319008285
This work considers a small random perturbation of alpha-stable jump type nonlinear reaction-diffusion equations with Dirichlet boundary conditions over an interval. It has two stable points whose domains of attraction meet in a separating manifold with several saddle points. Extending a method developed by Imkeller and Pavlyukevich it proves that in contrast to a Gaussian perturbation, the expected exit and transition times between the domains of attraction depend polynomially on the noise intensity in the small intensity limit. Moreover the solution exhibits metastable behavior: there is a polynomial time scale along which the solution dynamics correspond asymptotically to the dynamic behavior of a finite-state Markov chain switching between the stable states.
Author : Frank Moss
Publisher : Cambridge University Press
Page : 374 pages
File Size : 46,83 MB
Release : 1989-04-06
Category : Mathematics
ISBN : 0521352282
Vol. 1.
Author : Jordi Garcia-Ojalvo
Publisher : Springer Science & Business Media
Page : 314 pages
File Size : 39,80 MB
Release : 2012-12-06
Category : Science
ISBN : 1461215366
Intended for graduates and researchers in physics, chemistry, biology, and applied mathematics, this book provides an up-to-date introduction to current research in fluctuations in spatially extended systems. It covers the theory of stochastic partial differential equations and gives an overview of the effects of external noise on dynamical systems with spatial degrees of freedom. Starting with a general introduction to noise-induced phenomena in dynamical systems, the text moves on to an extensive discussion of analytical and numerical tools needed to gain information from stochastic partial differential equations. It then turns to particular problems described by stochastic PDEs, covering a wide part of the rich phenomenology of spatially extended systems, such as nonequilibrium phase transitions, domain growth, pattern formation, and front propagation. The only prerequisite is a minimal background knowledge of the Langevin and Fokker-Planck equations.
Author : Alistair I. Mees
Publisher : Springer Science & Business Media
Page : 490 pages
File Size : 45,93 MB
Release : 2001-01-25
Category : Business & Economics
ISBN : 9780817641634
This book describes the state of the art in nonlinear dynamical reconstruction theory. The chapters are based upon a workshop held at the Isaac Newton Institute, Cambridge University, UK, in late 1998. The book's chapters present theory and methods topics by leading researchers in applied and theoretical nonlinear dynamics, statistics, probability, and systems theory. Features and topics: * disentangling uncertainty and error: the predictability of nonlinear systems * achieving good nonlinear models * delay reconstructions: dynamics vs. statistics * introduction to Monte Carlo Methods for Bayesian Data Analysis * latest results in extracting dynamical behavior via Markov Models * data compression, dynamics and stationarity Professionals, researchers, and advanced graduates in nonlinear dynamics, probability, optimization, and systems theory will find the book a useful resource and guide to current developments in the subject.
Author : M. Reza Rahimi Tabar
Publisher : Springer
Page : 290 pages
File Size : 37,58 MB
Release : 2019-07-04
Category : Science
ISBN : 3030184722
This book focuses on a central question in the field of complex systems: Given a fluctuating (in time or space), uni- or multi-variant sequentially measured set of experimental data (even noisy data), how should one analyse non-parametrically the data, assess underlying trends, uncover characteristics of the fluctuations (including diffusion and jump contributions), and construct a stochastic evolution equation? Here, the term "non-parametrically" exemplifies that all the functions and parameters of the constructed stochastic evolution equation can be determined directly from the measured data. The book provides an overview of methods that have been developed for the analysis of fluctuating time series and of spatially disordered structures. Thanks to its feasibility and simplicity, it has been successfully applied to fluctuating time series and spatially disordered structures of complex systems studied in scientific fields such as physics, astrophysics, meteorology, earth science, engineering, finance, medicine and the neurosciences, and has led to a number of important results. The book also includes the numerical and analytical approaches to the analyses of complex time series that are most common in the physical and natural sciences. Further, it is self-contained and readily accessible to students, scientists, and researchers who are familiar with traditional methods of mathematics, such as ordinary, and partial differential equations. The codes for analysing continuous time series are available in an R package developed by the research group Turbulence, Wind energy and Stochastic (TWiSt) at the Carl von Ossietzky University of Oldenburg under the supervision of Prof. Dr. Joachim Peinke. This package makes it possible to extract the (stochastic) evolution equation underlying a set of data or measurements.
Author : Andrzej Lasota
Publisher : Springer Science & Business Media
Page : 481 pages
File Size : 30,44 MB
Release : 2013-11-27
Category : Mathematics
ISBN : 146124286X
The first edition of this book was originally published in 1985 under the ti tle "Probabilistic Properties of Deterministic Systems. " In the intervening years, interest in so-called "chaotic" systems has continued unabated but with a more thoughtful and sober eye toward applications, as befits a ma turing field. This interest in the serious usage of the concepts and techniques of nonlinear dynamics by applied scientists has probably been spurred more by the availability of inexpensive computers than by any other factor. Thus, computer experiments have been prominent, suggesting the wealth of phe nomena that may be resident in nonlinear systems. In particular, they allow one to observe the interdependence between the deterministic and probabilistic properties of these systems such as the existence of invariant measures and densities, statistical stability and periodicity, the influence of stochastic perturbations, the formation of attractors, and many others. The aim of the book, and especially of this second edition, is to present recent theoretical methods which allow one to study these effects. We have taken the opportunity in this second edition to not only correct the errors of the first edition, but also to add substantially new material in five sections and a new chapter.
Author : Steven H. Strogatz
Publisher : CRC Press
Page : 532 pages
File Size : 13,36 MB
Release : 2018-05-04
Category : Mathematics
ISBN : 0429961111
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
Author : Visarath In
Publisher : Springer Science & Business Media
Page : 464 pages
File Size : 34,15 MB
Release : 2009-02-11
Category : Technology & Engineering
ISBN : 3540856323
The ?eld of applied nonlinear dynamics has attracted scientists and engineers across many different disciplines to develop innovative ideas and methods to study c- plex behavior exhibited by relatively simple systems. Examples include: population dynamics, ?uidization processes, applied optics, stochastic resonance, ?ocking and ?ightformations,lasers,andmechanicalandelectricaloscillators. Acommontheme among these and many other examples is the underlying universal laws of nonl- ear science that govern the behavior, in space and time, of a given system. These laws are universal in the sense that they transcend the model-speci?c features of a system and so they can be readily applied to explain and predict the behavior of a wide ranging phenomena, natural and arti?cial ones. Thus the emphasis in the past decades has been in explaining nonlinear phenomena with signi?cantly less att- tion paid to exploiting the rich behavior of nonlinear systems to design and fabricate new devices that can operate more ef?ciently. Recently, there has been a series of meetings on topics such as Experimental Chaos, Neural Coding, and Stochastic Resonance, which have brought together many researchers in the ?eld of nonlinear dynamics to discuss, mainly, theoretical ideas that may have the potential for further implementation. In contrast, the goal of the 2007 ICAND (International Conference on Applied Nonlinear Dynamics) was focused more sharply on the implementation of theoretical ideas into actual - vices and systems.