Non-Classical Elastic Solids


Book Description

Problems concerning non-classical elastic solids continue to attract the attention of mathematicians, scientists and engineers. Research in this area addresses problems concerning many substances, such as crystals, polymers, composites, ceramics and blood. This comprehensive, accessible work brings together recent research in this field, and will be of great interest to mathematicians, physicists and other specialists working in this area.




Non-Classical Solids


Book Description




Non-Classical Problems in the Theory of Elastic Stability


Book Description

When a structure is put under an increasing compressive load, it becomes unstable and buckling occurs. Buckling is a particularly significant concern in designing shell structures such as aircraft, automobiles, ships, or bridges. This book discusses stability analysis and buckling problems and offers practical tools for dealing with uncertainties that exist in real systems. The techniques are based on two complementary theories which are developed in the text. First, the probabilistic theory of stability is presented, with particular emphasis on reliability. Both theoretical and computational issues are discussed. Secondly, the authors present the alternative to probability based on the notion of 'anti-optimization', a theory that is valid when the necessary information for probabilistic analysis is absent, that is, when only scant data are available. Design engineers, researchers, and graduate students in aerospace, mechanical, marine, and civil engineering who are concerned with issues of structural integrity will find this book a useful reference source.




Generalized Models and Non-classical Approaches in Complex Materials 1


Book Description

This book is the first of 2 special volumes dedicated to the memory of Gérard Maugin. Including 40 papers that reflect his vast field of scientific activity, the contributions discuss non-standard methods (generalized model) to demonstrate the wide range of subjects that were covered by this exceptional scientific leader. The topics range from micromechanical basics to engineering applications, focusing on new models and applications of well-known models to new problems. They include micro–macro aspects, computational endeavors, options for identifying constitutive equations, and old problems with incorrect or non-satisfying solutions based on the classical continua assumptions.




Linear and Non-Linear Deformations of Elastic Solids


Book Description

Linear and Non-Linear Deformations of Elastic Solids aims to compile the advances in the field of linear and non-linear elasticity through discussion of advanced topics. Broadly classified into two parts, it includes crack, contact, scattering and wave propagation in linear elastic solids and bending vibration, stability in non-linear elastic solids supported by MATLAB examples. This book is aimed at graduate students and researchers in applied mathematics, solid mechanics, applied mechanics, structural mechanics and includes comprehensive discussion of related analytical/numerical methods.




Stress Waves in Non-Elastic Solids


Book Description

Stress Waves in Non-Elastic Solids is a comprehensive presentation of the principles underlying the propagation of stress waves in non-elastic solids, with emphasis on wave problems in the theory of plasticity. This book exposes wave propagation problems for a range of material responses and justifies the hypotheses introduced in specialized theories and the simplifications made in the analysis of particular problems. Both analytical and numerical methods of solving problems are described, and a large number of solutions to specific problems of wave propagation in inelastic solids are given. This book is comprised of six chapters and begins with an overview of the fundamental equations of the dynamics of inelastic media. The dynamical properties of metals and soils are discussed, offering an account of the most representative theories of plasticity and viscoplasticity. The next chapter considers the basic definitions of discontinuity surfaces and the conditions that must to be satisfied across these surfaces. Certain mathematical fundamentals are given, referring to systems of differential equations, quasi-linear and semi-linear, of the first order. Initial and boundary value problems for hyperbolic equations are also formulated. The remaining chapters focus on methods of solving stress wave propagation problems, including one-dimensional plane waves and longitudinal-transverse waves. Wave propagation problems for elastic-plastic and elastic/viscoplastic media are treated in detail, along with the most important problem of shock waves in metals and soils. The last chapter deals with thermal wave propagation problems. This monograph will be a valuable resource for students and practitioners of engineering, physics, and mathematics.




Generalized Models and Non-classical Approaches in Complex Materials 2


Book Description

This book is the 2nd special volume dedicated to the memory of Gérard Maugin. Over 30 leading scientists present their contribution to reflect the vast field of scientific activity of Gérard Maugin. The topics of contributions employing often non-standard methods (generalized model) in this volume show the wide range of subjects that were covered by this exceptional scientific leader. The topics range from micromechanical basics to engineering applications, focusing on new models and applications of well-known models to new problems. They include micro-macro aspects, computational efforts, possibilities to identify the constitutive equations, and old problems with incorrect or non-satisfying solutions based on the classical continua assumptions.




Non-Classical Continuum Mechanics


Book Description

This dictionary offers clear and reliable explanations of over 100 keywords covering the entire field of non-classical continuum mechanics and generalized mechanics, including the theory of elasticity, heat conduction, thermodynamic and electromagnetic continua, as well as applied mathematics. Every entry includes the historical background and the underlying theory, basic equations and typical applications. The reference list for each entry provides a link to the original articles and the most important in-depth theoretical works. Last but not least, ever y entry is followed by a cross-reference to other related subject entries in the dictionary.







Universality of Nonclassical Nonlinearity


Book Description

This book presents the results of two major international research projects on phenomenology, theory and applications of Nonclassical Nonlinearity. It conveys concepts, experimental techniques and applications which were previously found in specialized journals. It also allows for an interdisciplinary audience to better understand the range of practical applications, and is timely and interesting to both researchers and professionals.