Logics for Computer Science


Book Description

Providing an in-depth introduction to fundamental classical and non-classical logics, this textbook offers a comprehensive survey of logics for computer scientists. Logics for Computer Science contains intuitive introductory chapters explaining the need for logical investigations, motivations for different types of logics and some of their history. They are followed by strict formal approach chapters. All chapters contain many detailed examples explaining each of the introduced notions and definitions, well chosen sets of exercises with carefully written solutions, and sets of homework. While many logic books are available, they were written by logicians for logicians, not for computer scientists. They usually choose one particular way of presenting the material and use a specialized language. Logics for Computer Science discusses Gentzen as well as Hilbert formalizations, first order theories, the Hilbert Program, Godel's first and second incompleteness theorems and their proofs. It also introduces and discusses some many valued logics, modal logics and introduces algebraic models for classical, intuitionistic, and modal S4 and S5 logics. The theory of computation is based on concepts defined by logicians and mathematicians. Logic plays a fundamental role in computer science, and this book explains the basic theorems, as well as different techniques of proving them in classical and some non-classical logics. Important applications derived from concepts of logic for computer technology include Artificial Intelligence and Software Engineering. In addition to Computer Science, this book may also find an audience in mathematics and philosophy courses, and some of the chapters are also useful for a course in Artificial Intelligence.










Computability and Logic


Book Description

This fifth edition of 'Computability and Logic' covers not just the staple topics of an intermediate logic course such as Godel's incompleteness theorems, but also optional topics that include Turing's theory of computability and Ramsey's theorem.




Classical and Nonclassical Logics


Book Description

Classical logic is traditionally introduced by itself, but that makes it seem arbitrary and unnatural. This text introduces classical alongside several nonclassical logics (relevant, constructive, quantative, paraconsistent).




Kolmogorov Complexity and Algorithmic Randomness


Book Description

Looking at a sequence of zeros and ones, we often feel that it is not random, that is, it is not plausible as an outcome of fair coin tossing. Why? The answer is provided by algorithmic information theory: because the sequence is compressible, that is, it has small complexity or, equivalently, can be produced by a short program. This idea, going back to Solomonoff, Kolmogorov, Chaitin, Levin, and others, is now the starting point of algorithmic information theory. The first part of this book is a textbook-style exposition of the basic notions of complexity and randomness; the second part covers some recent work done by participants of the “Kolmogorov seminar” in Moscow (started by Kolmogorov himself in the 1980s) and their colleagues. This book contains numerous exercises (embedded in the text) that will help readers to grasp the material.




Essays on Non-classical Logic


Book Description

This book covers a broad range of up-to-date issues in non-classical logic that are of interest not only to philosophical and mathematical logicians but also to computer scientists and researchers in artificial intelligence. The problems addressed range from methodological issues in paraconsistent and deontic logic to the revision theory of truth and infinite Turing machines. The book identifies a number of important current trends in contemporary non-classical logic. Among them are dialogical and substructural logic, the classification of concepts of negation, truthmaker theory, and mathematical and foundational aspects of modal and temporal logic.




Philosophy of Medicine


Book Description

This volume covers a wide range of conceptual, epistemological and methodological issues in the philosophy of science raised by reflection upon medical science and practice. Several chapters examine such general meta-scientific concepts as discovery, reduction, theories and models, causal inference and scientific realism as they apply to medicine or medical science in particular. Some discuss important concepts specific to medicine (diagnosis, health, disease, brain death). A topic such as evidence, for instance, is examined at a variety of levels, from social mechanisms for guiding evidence-based reasoning such as evidence-based medicine, consensus conferences, and clinical trials, to the more abstract analysis of experimentation, inference and uncertainty. Some chapters reflect on particular domains of medicine, including psychiatry, public health, and nursing. The contributions span a broad range of detailed cases from the science and practice of medicine, as well as a broad range of intellectual approaches, from conceptual analysis to detailed examinations of particular scientific papers or historical episodes. Chapters view philosophy of medicine from quite different angles Considers substantive cases from both medical science and practice Chapters from a distinguished array of contributors




Fundamentals of Logic and Computation


Book Description

This textbook aims to help the reader develop an in-depth understanding of logical reasoning and gain knowledge of the theory of computation. The book combines theoretical teaching and practical exercises; the latter is realised in Isabelle/HOL, a modern theorem prover, and PAT, an industry-scale model checker. I also give entry-level tutorials on the two software to help the reader get started. By the end of the book, the reader should be proficient in both software. Content-wise, this book focuses on the syntax, semantics and proof theory of various logics; automata theory, formal languages, computability and complexity. The final chapter closes the gap with a discussion on the insight that links logic with computation. This book is written for a high-level undergraduate course or a Master's course. The hybrid skill set of practical theorem proving and model checking should be helpful for the future of readers should they pursue a research career or engineering in formal methods.