Non-coding RNAs and Epigenetic Regulation of Gene Expression


Book Description

Non-coding RNAs potentially play an active role in modulating gene transcription and epigenetic states. Several genes in differentiated cells may be under some form of RNA-based transcriptional and epigenetic regulatory control. This form of regulation may be controlled by selective pressures and influence the adaptability of the cell. The concept that RNA can control epigenetic states impacts our understanding of the basic fabric of the cell and may have therapeutic potential. Many studies have been carried out on the modulation of gene transcription by non-coding RNAs. This book, written by a group of distinguished scientists, represents an important overview and summary of the field to date. The 13 chapters are organized into three sections: a) Non-coding RNAs: Form, Function and Diversity; b) Non-coding RNAs: Gene Regulation and Epigenetics; and c) Non-coding RNAs: Disease and Therapeutics. This up-to-date volume is an essential book for those working in the area and represents a major information resource on current research in the fast-moving fields of epigenetics, the regulation of gene expression, and RNA research.




Molecular Biology of Long Non-coding RNAs


Book Description

This second edition shows how long non-coding RNAs (lnc)RNAs have emerged as a new paradigm in epigenetic regulation of the genome. Thousands of lncRNAs have been identified and observed in a wide range of organisms. Unlike mRNA, lncRNA have no protein-coding capacity. So, while their function is not entirely clear, they may serve as key organizers of protein complexes that allow for higher order regulatory events. Advances in the field also include better characterization of human long non-coding RNAs, novel insights into their roles in human development and disease, their diverse mechanisms of action and novel technologies to study them.




Cancer and Noncoding RNAs


Book Description

Cancer and Noncoding RNAs offers an in-depth exploration of noncoding RNAs and their role in epigenetic regulation of complex human disease, most notably cancer. In addition to examining microRNAs, this volume provides a unique evaluation of more recently profiled noncoding RNAs now implicated in carcinogenesis, including lncRNAs, piRNAs, circRNAs, and tRNAs, identifying differences in function between these noncoding RNAs and how they interact with the rest of the epigenome. A broad range of chapters from experts in the field detail epigenetic regulation of various cancer types, along with recent next generation sequencing technologies, genome-wide association studies (GWAS) and bioinformatics approaches. This book will help researchers in genomic medicine and cancer biology better understand the role of noncoding RNAs in epigenetics, aiding in the development of useful biomarkers for diagnosis, prognosis and new RNA-based disease therapies. Provides a comprehensive analysis of noncoding RNAs implicated in epigenetic regulation of gene expression and chromatin dynamics Educates researchers and graduate students by highlighting, in addition to miRNAs, a range of noncoding RNAs newly associated with carcinogenesis Applies current knowledge of noncoding RNAs and epigenomics towards developing cancer and RNA-based disease therapies Features contributions by leading experts in the field




Long Non-Coding RNAs


Book Description

Long non-coding RNAs (lncRNAs), tentatively defined as ncRNAs of more than two hundred nucleotides in length, are characterized by the complexity and diversity of their sequences and mechanisms of action. Based on genome-wide studies, more than 3,300 of them exist, but to date only the limited number of functional lncRNAs have been identified and characterized. Nonetheless, lncRNAs have emerged as key molecules involved in the control of transcriptional and posttranscriptional gene regulatory pathways. They take part in the recruitment of chromatin modifying complexes and regulate splicing, localization, stability and translation of the target mRNAs. This book provides an overview of the rapidly advancing field of long ncRNAs, describing the epigenetic and non-epigenetic mechanisms by which they regulate various biological functions in model systems, from yeast to mammals. The role of ncRNAs in sex chromosome dosage compensation in flies and mammals is described, as well as their role in centromere and telomere biology. Long non-coding RNAs involved in environmental stress response and development are presented and their mechanisms of action discussed.




Epigenetics: Development and Disease


Book Description

Epigenetics fine-tunes the life processes dictated by DNA sequences, but also kick-starts pathophysiological processes including diabetes, AIDS and cancer. This volume tracks the latest research on epigenetics, including work on new-generation therapeutics.




Epigenetics in Health and Disease


Book Description

This is the first comprehensive, authoritative, and easy-to-understand introduction to modern epigenetics. Authored by two active researchers in the field, it introduces key concepts one step at a time, enabling students at all levels to benefit from it. The authors begin by presenting a historical overview that places epigenetics in context, and makes it clear that the field is not (as some presume) completely new. Next, they introduce and explain key epigenetic mechanisms, and discuss the roles these mechanisms may play in inheritance, organism development, health and disease, behavior, evolution, ecology, and the interaction of individual organisms with their environments. Coverage includes: non-coding RNAs in each kingdom; allelic interactions; CRYSPR; gene silencing; epigenetics of germline and epigenetic memory; epigenetic regulation of genome stability and plant stress response; and much more. The authors conclude by offering significant new insights into how knowledge of epigenetics and epigenomics may promote the development of technologies and solutions in areas ranging from behavioral neuroscience to cancer treatment, toxicology to the development of hardier crops.




Epigenetic Mechanisms of Gene Regulation


Book Description

Many inheritable changes in gene function are not explained by changes in the DNA sequence. Such epigenetic mechanisms are known to influence gene function in most complex organisms and include effects such as transposon function, chromosome imprinting, yeast mating type switching and telomeric silencing. In recent years, epigenetic effects have become a major focus of research activity. This monograph, edited by three well-known biologists from different specialties, is the first to review and synthesize what is known about these effects across all species, particularly from a molecular perspective, and will be of interest to everyone in the fields of molecular biology and genetics.




Epigenetic Modifications and Viral Infections


Book Description

Epigenetics is defined as the study of modifications of the genome, heritable during cell division that does not involve changes in DNA sequences. Up to date, epigenetic modifications involve at least three general mechanisms regulating gene expression: histone modifications, DNA methylation, and non-coding RNAs (ncRNAs). For the past two decades, an explosion in our interest and understanding of epigenetic mechanisms has been seen. This mainly based on the influence that epigenetic alterations have on an amazing number of biological processes, such as gene expression, imprinting, programmed DNA rearrangements, germ line silencing, developmentally cued stem cell division, and overall chromosomal stability and identity. It has become also evident that the constant exposure of living organisms to environment factors affects their genomes through epigenetic mechanisms. Viruses infecting animal cells are thought to play central roles in shaping the epigenetic scenario of infected cells. In this context it has become obvious that knowing the impact that viral infections have on the epigenetic control of their host cells will certainly lead to a better understanding of the interplay viruses have with animal cells. In fact, DNA viruses use host transcription factors as well as epigenetic regulators in such a way that they affect epigenetic control of gene expression that extends to host gene expression. At the same time, animal cells employ mechanisms controlling transcription factors and epigenetic processes, in order to eliminate viral infections. In summary, epigenetic mechanisms are involved in most virus-cell interactions. We now know that some viruses exhibit epigenetic immune evasion mechanisms to survive and propagate in their host; however, there is still much ambiguity over these epigenetic mechanisms of viral immune evasion, and most of the discovered mechanisms are still incomplete. Other animal viruses associated to cancer often deregulate cellular epigenetic mechanisms, silencing cellular tumor-suppressor genes and/or activating either viral or host cell oncogenes. In addition, in several cancers the down-regulation of tumor suppressor protein-coding genes and ncRNAs with growth inhibitory functions, such as miRNAs, have been closely linked to the presence of cell CpG island promoter hypermethylation. The goal of the aforementioned Research Topic is to bring together the key experimental and theoretical research, linking state-of-the-art knowledge about the epigenetic mechanisms involved in animal virus-cell interactions.







The Chemical Biology of Long Noncoding RNAs


Book Description

This book offers a comprehensive and detailed overview of various aspects of long non-coding RNAs. It discusses their emerging significance in molecular medicine, ranging from human cancers to cardiovascular and metabolic diseases. Transcriptomic studies have demonstrated that the majority of genomes found in complex organisms are expressed in highly dynamic and cell-specific patterns, producing huge numbers of intergenic, antisense and intronic long non-protein-coding RNAs (lncRNAs). Thousands of lncRNAs have been identified, and unlike mRNA, they have no protein-coding capacity. A large repertoire of ncRNAs, actively transcribed from the mammalian genome, control diverse cellular processes, both in terms of development and diseases, through a variety of gene regulatory mechanisms. IncRNAs have emerged as a new paradigm in epigenetic regulation of the genome. Given its scope, the book will be of particular interest to molecular, chemical, cell and developmental biologists, as well as specialists in translational medicine involved in disease-oriented research. It also offers a valuable resource for in silico experts seeking a deeper understanding of lncRNA expression and function through computational analysis of the NGS data.