Non-diffracting Waves


Book Description

This continuation and extension of the successful book "Localized Waves" by the same editors brings together leading researchers in non-diffractive waves to cover the most important results in their field and as such is the first to present the current state. The well-balanced presentation of theory and experiments guides readers through the background of different types of non-diffractive waves, their generation, propagation, and possible applications. The authors include a historical account of the development of the field, and cover different types of non-diffractive waves, including Airy waves and realistic, finite-energy solutions suitable for experimental realization. Apart from basic research, the concepts explained here have promising applications in a wide range of technologies, from wireless communication to acoustics and bio-medical imaging.




Localized Waves


Book Description

The first book on Localized Waves—a subject of phenomenal worldwide research with important applications from secure communications to medicine Localized waves—also known as non-diffractive waves—are beams and pulses capable of resisting diffraction and dispersion over long distances even in non-guiding media. Predicted to exist in the early 1970s and obtained theoretically and experimentally as solutions to the wave equations starting in 1992, localized waves now garner intense worldwide research with applications in all fields where a role is played by a wave equation, from electromagnetism to acoustics and quantum physics. In the electromagnetics areas, they are paving the way, for instance, to ubiquitous secure communications in the range of millimeter waves, terahertz frequencies, and optics. At last, the localized waves with an envelope at rest are expected to have important applications especially in medicine. Localized Waves brings together the world's most productive researchers in the field to offer a well-balanced presentation of theory and experiments in this new and exciting subject. Composed of thirteen chapters, this dynamic volume: Presents a thorough review of the theoretical foundation and historical aspects of localized waves Explores the interconnections of the subject with other technologies and scientific areas Analyzes the effect of arbitrary anisotropies on both continuous-wave and pulsed non-diffracting fields Describes the physical nature and experimental implementation of localized waves Provides a general overview of wave localization, for example in photonic crystals, which have received increasing attention in recent years Localized Waves is the first book to cover this emerging topic, making it an indispensable resource in particular for researchers in electromagnetics, acoustics, fundamental physics, and free-space communications, while also serving as a requisite text for graduate students.







Diffraction Optics of Complex-Structured Periodic Media


Book Description

This book presents recent theoretical and experimental results of localized optical modes and low-threshold lasing in spiral photonic media. Efficient applications of localized modes for low-threshold lasing at the frequencies of localized modes are a central topic of the book's new chapters. Attention is paid to the analytical approach to the problem. The book focuses on one of the most extensively studied media in this field, cholesteric liquid crystals. The chosen model, in the absence of dielectric interfaces, allows to remove the problem of polarization mixing at surfaces, layers and defect structures. It allows to reduce the corresponding equations to the equations for light of diffracting polarization only. The problem concentrates then on the edge and defect optical modes. The possibility to reduce the lasing threshold due to an anomalously strong absorption effect is presented theoretically for distributed feedback lasing. It is shown that a minimum of the threshold-pumping wave intensity can be reached for the pumping wave frequency coinciding with the localized mode frequency (what can be reached for a pumping wave propagating at a certain angle to the helical axes). Analytic expressions for transmission and reflection coefficients are presented. In the present second edition, experimental observations of theoretically revealed phenomena in spiral photonic media are discussed. The main results obtained for spiral media are qualitatively valid for photonic crystals of any nature and therefore may be applied as a guide to investigations of other photonic crystals where the corresponding theory is more complicated and demands a numerical approach. It is demonstrated that many optical phenomena occurring at the frequencies of localized modes reveal unusual properties which can be used for efficient applications of the corresponding phenomena, efficient frequency conversion and low threshold lasing, e.g. For the convenience of the reader, an introduction is given to conventional linear and nonlinear optics of structured periodic media. This book is valuable to researchers, postgraduate, and graduate students active in theoretical and experimental physics in the field of interaction of radiation with condensed matter.




Fundamentals of the Physical Theory of Diffraction


Book Description

This book is the first complete and comprehensive description of the modern Physical Theory of Diffraction (PTD) based on the concept of elementary edge waves (EEWs). The theory is demonstrated with the example of the diffraction of acoustic and electromagnetic waves at perfectly reflecting objects. The derived analytic expressions clearly explain the physical structure of the scattered field and describe in detail all of the reflected and diffracted rays and beams, as well as the fields in the vicinity of caustics and foci. Shadow radiation, a new fundamental component of the field, is introduced and proven to contain half of the total scattered power.




Diffraction Optics of Complex-Structured Periodic Media


Book Description

Probing matter with beams of photons, neutrons and electrons provides the main source of information about both the microscopic and macroscopic structure of materials. This is particularly true of media, such as crystals and liquid crystals, that have a periodic structure. This book discusses the interaction of waves (which may represent x-rays, gamma rays, electrons, or neutrons) with various kinds of ordered media. After two chapters dealing with exact and approximate solutions to the scattering problem in periodic media in general, the author discusses: the diffraction of Mößbauer radiation in magnetically ordered crystals; the optics of chiral liquid crystals; the radiation of fast particles in regular media (Cherenkov radiation); nonlinear optics of periodic media; neutron scattering in magnetically ordered media; polarization phenomena in x-ray optics; magnetic x-ray scattering; and Mößbauer filtration of synchrotron radiation.




New Research on Lasers and Electro-optics


Book Description

It is expected that ongoing advances in optics will revolutionise the 21st century as they began doing in the last quarter of the 20th. Such fields as communications, materials science, computing and medicine are leaping forward based on developments in optics. This series presents leading edge research on optics and lasers from researchers spanning the globe.




Non-diffracting Waves


Book Description

This continuation and extension of the successful book "Localized Waves" by the same editors brings together leading researchers in non-diffractive waves to cover the most important results in their field and as such is the first to present the current state. The well-balanced presentation of theory and experiments guides readers through the background of different types of non-diffractive waves, their generation, propagation, and possible applications. The authors include a historical account of the development of the field, and cover different types of non-diffractive waves, including Airy waves and realistic, finite-energy solutions suitable for experimental realization. Apart from basic research, the concepts explained here have promising applications in a wide range of technologies, from wireless communication to acoustics and bio-medical imaging.







Progress in Optics


Book Description

In the almost fifty years that have gone by since the first volume of Progress in Optics was published, optics has become one of the most dynamic fields of science. The volumes in this series that have appeared up to now contain more than 300 review articles by distinguished research workers, which have become permanent records for many important developments. - Invariant Optical Fields - Quantum Optics in Structured Media - Polarization and Coherence Optics - Optical Quantum Computation - Photonic Crystals - Lase Beam-Splitting Gratings