Non-equilibrium Thermodynamics of Heterogeneous Systems


Book Description

The purpose of this book is to encourage the use of non-equilibrium thermodynamics to describe transport in complex, heterogeneous media. With large coupling effects between the transport of heat, mass, charge and chemical reactions at surfaces, it is important to know how one should properly integrate across systems where different phases are in contact. No other book gives a prescription of how to set up flux equations for transports across heterogeneous systems.The authors apply the thermodynamic description in terms of excess densities, developed by Gibbs for equilibrium, to non-equilibrium systems. The treatment is restricted to transport into and through the surface. Using local equilibrium together with the balance equations for the surface, expressions for the excess entropy production of the surface and of the contact line are derived. Many examples are given to illustrate how the theory can be applied to coupled transport of mass, heat, charge and chemical reactions; in phase transitions, at electrode surfaces and in fuel cells. Molecular simulations and analytical studies are used to add insight.




Experimental Thermodynamics Volume X


Book Description

Covering recent developments in the theory of non-equilibrium thermodynamics and its applications, this title is aimed at a predominantly, but not exclusively, academic audience of practitioners of thermodynamics and energy conversion.




Nonequilibrium Thermodynamics


Book Description

Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, Third Edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapter on stochastic approaches to include the statistical thermodynamics, mesoscopic nonequilibrium thermodynamics, fluctuation theory, information theory, and modeling the coupled biochemical systems in thermodynamic analysis. This new addition also comes with more examples and practice problems. - Informs and updates on all the latest developments in the field - Contributions from leading authorities and industry experts - A useful text for seniors and graduate students from diverse engineering and science programs to analyze some nonequilibrium, coupled, evolutionary, stochastic, and dissipative processes - Highlights fundamentals of equilibrium thermodynamics, transport processes and chemical reactions - Expands the theory of nonequilibrium thermodynamics and its use in coupled transport processes and chemical reactions in physical, chemical, and biological systems - Presents a unified analysis for transport and rate processes in various time and space scales - Discusses stochastic approaches in thermodynamic analysis including fluctuation and information theories - Has 198 fully solved examples and 287 practice problems - An Instructor Resource containing the Solution Manual can be obtained from the author: [email protected]




Non-equilibrium Thermodynamics Of Heterogeneous Systems (Second Edition)


Book Description

This book utilizes non-equilibrium thermodynamics to describe transport in complex, heterogeneous media. There are large coupling effects between transport of heat, mass, charge and chemical reactions at surfaces, and it is important to know how one should properly integrate across systems where different phases are in contact. There is no other book available today that gives a prescription of how to set up flux equations for transports across heterogeneous systems.




Non-Equilibrium Thermodynamics of Heterogeneous Systems (Second Edition)


Book Description

This book utilizes non-equilibrium thermodynamics to describe transport in complex, heterogeneous media. There are large coupling effects between transport of heat, mass, charge and chemical reactions at surfaces, and it is important to know how one should properly integrate across systems where different phases are in contact. There is no other book available today that gives a prescription of how to set up flux equations for transports across heterogeneous systems.




Thermodynamics and Statistical Mechanics of Small Systems


Book Description

This book is a printed edition of the Special Issue "Thermodynamics and Statistical Mechanics of Small Systems" that was published in Entropy




Non-equilibrium Thermodynamics For Engineering Applications


Book Description

This book presents the theory of non-equilibrium thermodynamics in a pedagogical and practical way that targets engineering applications. In it, tools to take advantage of the second as well as the first law of thermodynamics are provided.The book starts by explaining how the entropy production is the cornerstone of non-equilibrium thermodynamics — the basis to describe coupled transport phenomena, which are highly relevant for several renewable energy technologies. The book also uses entropy production as the foundation for a systematic methodology to analyze and improve energy efficiency, and shows how entropy production can be used to test the consistency of transport models. The link between transport theory and energy efficiency is also shown, and the relationship to exergy analysis is demonstrated. The theory is applied using examples from practical cases like evaporation, heat exchange, reactor optimization, distillation and more.Non-Equilibrium Thermodynamics for Engineering Applications may be used as a textbook for undergraduate and graduate university curricula containing thermodynamics or energy conversion issues at large, chemical and mechanical engineering, applied chemistry and applied physics.




Non-equilibrium Statistical Physics with Application to Disordered Systems


Book Description

This textbook is the result of the enhancement of several courses on non-equilibrium statistics, stochastic processes, stochastic differential equations, anomalous diffusion and disorder. The target audience includes students of physics, mathematics, biology, chemistry, and engineering at undergraduate and graduate level with a grasp of the basic elements of mathematics and physics of the fourth year of a typical undergraduate course. The little-known physical and mathematical concepts are described in sections and specific exercises throughout the text, as well as in appendices. Physical-mathematical motivation is the main driving force for the development of this text. It presents the academic topics of probability theory and stochastic processes as well as new educational aspects in the presentation of non-equilibrium statistical theory and stochastic differential equations.. In particular it discusses the problem of irreversibility in that context and the dynamics of Fokker-Planck. An introduction on fluctuations around metastable and unstable points are given. It also describes relaxation theory of non-stationary Markov periodic in time systems. The theory of finite and infinite transport in disordered networks, with a discussion of the issue of anomalous diffusion is introduced. Further, it provides the basis for establishing the relationship between quantum aspects of the theory of linear response and the calculation of diffusion coefficients in amorphous systems.




Understanding Non-equilibrium Thermodynamics


Book Description

Discover the many facets of non-equilibrium thermodynamics. The first part of this book describes the current thermodynamic formalism recognized as the classical theory. The second part focuses on different approaches. Throughout the presentation, the emphasis is on problem-solving applications. To help build your understanding, some problems have been analyzed using several formalisms to underscore their differences and their similarities.




A TEXTBOOK OF CHEMICAL ENGINEERING THERMODYNAMICS


Book Description

Designed as an undergraduate-level textbook in Chemical Engineering, this student-friendly, thoroughly class-room tested book, now in its second edition, continues to provide an in-depth analysis of chemical engineering thermodynamics. The book has been so organized that it gives comprehensive coverage of basic concepts and applications of the laws of thermodynamics in the initial chapters, while the later chapters focus at length on important areas of study falling under the realm of chemical thermodynamics. The reader is thus introduced to a thorough analysis of the fundamental laws of thermodynamics as well as their applications to practical situations. This is followed by a detailed discussion on relationships among thermodynamic properties and an exhaustive treatment on the thermodynamic properties of solutions. The role of phase equilibrium thermodynamics in design, analysis, and operation of chemical separation methods is also deftly dealt with. Finally, the chemical reaction equilibria are skillfully explained. Besides numerous illustrations, the book contains over 200 worked examples, over 400 exercise problems (all with answers) and several objective-type questions, which enable students to gain an in-depth understanding of the concepts and theory discussed. The book will also be a useful text for students pursuing courses in chemical engineering-related branches such as polymer engineering, petroleum engineering, and safety and environmental engineering. New to This Edition • More Example Problems and Exercise Questions in each chapter • Updated section on Vapour–Liquid Equilibrium in Chapter 8 to highlight the significance of equations of state approach • GATE Questions up to 2012 with answers