Theoretical and Experimental Studies on Non-Fourier Heat Conduction Based on Thermomass Theory


Book Description

This book mainly focuses on the theoretical and experimental study of non-Fourier heat conduction behavior. A novel thermomass theory is used as the theoretical basis, which provides a general heat conduction equation for the accurate prediction of non-Fourier heat conduction. In order to prove the validity of this thermomass theory, a large current was used to heat the metallic nanofilm at the minimum temperature of 3 K. The measured average temperature of the nanofilm was notably higher than the prediction of Fourier’s heat diffusion equation, while matching well with the general heat conduction equation. This is the first time that steady non-Fourier heat conduction has been observed. Moreover, this book concerns the role of electron-phonon interaction in metallic nanofilms, which involves the breakdown of the Wiedemann-Franz law at low temperatures and interfacial thermal resistance at femtosecond timescales. Readers will find useful information on non-Fourier heat conduction and the latest advances in the study of charge and heat transport in metallic nanofilms.




Non-Fourier Heat Conduction


Book Description

This book presents a broad and well-structured overview of various non-Fourier heat conduction models. The classical Fourier heat conduction model is valid for most macroscopic problems. However, it fails when the wave nature of the heat propagation becomes dominant and memory or non-local spatial effects become significant; e.g., during ultrafast heating, heat transfer at the nanoscale, in granular and porous materials, at extremely high values of the heat flux, or in heat transfer in biological tissues. The book looks at numerous non-Fourier heat conduction models that incorporate time non-locality for materials with memory, such as hereditary materials, including fractional hereditary materials, and/or spatial non-locality, i.e. materials with a non-homogeneous inner structure. Beginning with an introduction to classical transport theory, including phase-lag, phonon, and thermomass models, the book then looks at various aspects of relativistic and quantum transport, including approaches based on the Landauer formalism as well as the Green-Kubo theory of linear response. Featuring an appendix that provides an introduction to methods in fractional calculus, this book is a valuable resource for any researcher interested in theoretical and numerical aspects of complex, non-trivial heat conduction problems.




Dynamical Analysis of Non-Fourier Heat Conduction and Its Application in Nanosystems


Book Description

This thesis studies the general heat conduction law, irreversible thermodynamics and the size effect of thermal conductivity exhibited in nanosystems from the perspective of recently developed thermomass theory. The derivation bridges the microscopic phonon Boltzmann equation and macroscopic continuum mechanics. Key concepts such as entropy production, temperature and the Onsager reciprocal relation are revisited in the case of non-Fourier heat conduction. Lastly, useful expressions are extracted from the picture of phonon gas dynamics and are used to successfully predict effective thermal conductivity in nanosystems.







Macro- to Microscale Heat Transfer


Book Description

Physical processes taking place in micro/nanoscale strongly depend on the material types and can be very complicated. Known approaches include kinetic theory and quantum mechanics, non-equilibrium and irreversible thermodynamics, molecular dynamics, and/or fractal theory and fraction model. Due to innately different physical bases employed, different approaches may involve different physical properties in describing micro/nanoscale heat transport. In addition, the parameters involved in different approaches, may not be mutually inclusive. Macro- to Microscale Heat Transfer: The Lagging Behavior, Second Edition continues the well-received concept of thermal lagging through the revolutionary approach that focuses on the finite times required to complete the various physical processes in micro/nanoscale. Different physical processes in heat/mass transport imply different delay times, which are common regardless of the material type. The delay times, termed phase lags, are characteristics of materials. Therefore the dual-phase-lag model developed is able to describe eleven heat transfer models from macro to nanoscale in the same framework of thermal lagging. Recent extensions included are the lagging behavior in mass transport, as well as the nonlocal behavior in space, bearing the same merit of thermal lagging in time, in shrinking the ultrafast response down to the nanoscale. Key features: Takes a unified approach describing heat and mass transport from macro, micro to nanoscale Compares experimental results for model validation Includes easy to follow mathematical formulation Accompanied by a website hosting supporting material Macro- to Microscale Heat Transfer: The Lagging Behavior, Second Edition is a comprehensive reference for researchers and practitioners, and graduate students in mechanical, aerospace, biological and chemical engineering.







Non-Fourier Heat Conduction


Book Description

This book presents a broad and well-structured overview of various non-Fourier heat conduction models. The classical Fourier heat conduction model is valid for most macroscopic problems. However, it fails when the wave nature of the heat propagation becomes dominant and memory or non-local spatial effects become significant; e.g., during ultrafast heating, heat transfer at the nanoscale, in granular and porous materials, at extremely high values of the heat flux, or in heat transfer in biological tissues. The book looks at numerous non-Fourier heat conduction models that incorporate time non-locality for materials with memory, such as hereditary materials, including fractional hereditary materials, and/or spatial non-locality, i.e. materials with a non-homogeneous inner structure. Beginning with an introduction to classical transport theory, including phase-lag, phonon, and thermomass models, the book then looks at various aspects of relativistic and quantum transport, including approaches based on the Landauer formalism as well as the Green-Kubo theory of linear response. Featuring an appendix that provides an introduction to methods in fractional calculus, this book is a valuable resource for any researcher interested in theoretical and numerical aspects of complex, non-trivial heat conduction problems.




Extended Thermodynamics


Book Description

Physicists firmly believe that the differential equations of nature should be hyperbolic so as to exclude action at a distance; yet the equations of irreversible thermodynamics - those of Navier-Stokes and Fourier - are parabolic. This incompatibility between the expectation of physicists and the classical laws of thermodynamics has prompted the formulation of extended thermodynamics. After describing the motifs and early evolution of this new branch of irreversible thermodynamics, the authors apply the theory to mon-atomic gases, mixtures of gases, relativistic gases, and "gases" of phonons and photons. The discussion brings into perspective the various phenomena called second sound, such as heat propagation, propagation of shear stress and concentration, and the second sound in liquid helium. The formal mathematical structure of extended thermodynamics is exposed and the theory is shown to be fully compatible with the kinetic theory of gases. The study closes with the testing of extended thermodynamics through the exploitation of its predictions for measurements of light scattering and sound propagation.




Non-fourier Heat Equations in Solids Analyzed from Phonon Statistics


Book Description

Advances in microelectronics and nanotechnology have generated tremendous interest in the non-Fourier regimes of heat conduction, where the conventional theories based on local equilibrium no longer apply. The non-Fourier regimes include small length scales, where the medium can no longer be treated using bulk properties due to ballistic transport, and short time scales, on the order of the relaxation time of heat carriers, such as in short pulse laser heating. One of the objectives of this thesis is to clarify some misunderstandings in hyperbolic heat equation (HHE), commonly thought as a remedy of Fourier's law at small time scales. The HHE is analyzed from the stand point of statistical mechanics with an emphasis on the consequences of assumptions applied to the Boltzmann transport equation (BTE) when deriving the HHE. In addition, some misperceptions of the HHE, caused by a few experiments and confusion with other physical phenomena, are clarified. It is concluded that HHE should not be interpreted as a more general equation governing heat transport because of several fundamental limitations. The other objective of this thesis is to introduce radiation entropy to the equation of phonon radiative transport (EPRT) for understanding the heat transfer mechanism on a fundamental level which can be applied to both diffusion and ballistic heat conduction in dielectric solids. The entropy generation due to phonon transport is examined along with the definition of a phonon brightness temperature, which is direction and frequency dependent. A better understanding of non-Fourier heat conduction will help researchers and engineers to choose appropriate theories or models in analyzing thermal transport in nanodevices.