Non-Homogeneous Boundary Value Problems and Applications


Book Description

1. We describe, at first in a very formaI manner, our essential aim. n Let m be an op en subset of R , with boundary am. In m and on am we introduce, respectively, linear differential operators P and Qj' 0 ~ i ~ 'V. By "non-homogeneous boundary value problem" we mean a problem of the following type: let f and gj' 0 ~ i ~ 'v, be given in function space s F and G , F being a space" on m" and the G/ s spaces" on am" ; j we seek u in a function space u/t "on m" satisfying (1) Pu = f in m, (2) Qju = gj on am, 0 ~ i ~ 'v«])). Qj may be identically zero on part of am, so that the number of boundary conditions may depend on the part of am considered 2. We take as "working hypothesis" that, for fEF and gjEG , j the problem (1), (2) admits a unique solution u E U/t, which depends 3 continuously on the data . But for alllinear probIems, there is a large number of choiees for the space s u/t and {F; G} (naturally linke d together). j Generally speaking, our aim is to determine families of spaces 'ft and {F; G}, associated in a "natural" way with problem (1), (2) and con j venient for applications, and also all possible choiees for u/t and {F; G} j in these families.




Partial Differential Equations and Boundary-Value Problems with Applications


Book Description

Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems--rectangular, cylindrical, and spherical. Each of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate throughout the text. The notions of steady-state solution of closely related stationary solutions are developed for the heat equation; applications to the study of heat flow in the earth are presented. The problem of the vibrating string is studied in detail both in the Fourier transform setting and from the viewpoint of the explicit representation (d'Alembert formula). Additional chapters include the numerical analysis of solutions and the method of Green's functions for solutions of partial differential equations. The exposition also includes asymptotic methods (Laplace transform and stationary phase). With more than 200 working examples and 700 exercises (more than 450 with answers), the book is suitable for an undergraduate course in partial differential equations.




Function Spaces


Book Description

Kniha popisuje teorii různých prostorů funkcí a dává možnost funkcionálně analytickému přístupu k řešení diferenciálních rovnic. Je rozdělena do tří částí, z nichž první pojednává předběžně o funkcionální analýze, ovektorových, metrických, lineárních, Banachových a Hilbertových prostorech, operátorech apod. Druhá část pojednává o integrovatelných funkcích a o prostorech a integrálech různých autorů. V třetí části se popisují Sobolevovy aOrliczovy prostory, dále prostory anizotropní, Nikolského a Slobodeckého.




Equadiff 99 (In 2 Volumes) - Proceedings Of The International Conference On Differential Equations


Book Description

This book is a compilation of high quality papers focussing on five major areas of active development in the wide field of differential equations: dynamical systems, infinite dimensions, global attractors and stability, computational aspects, and applications. It is a valuable reference for researchers in diverse disciplines, ranging from mathematics through physics, engineering, chemistry, nonlinear science to the life sciences.




Advances in Solid and Fracture Mechanics


Book Description

This book presents a collection of articles reporting the current challenges in solid and fracture mechanics. The book is devoted to the 90th birthday of academician Nikita F. Morozov—a well-known specialist in the field of solid and fracture mechanics.




Design Methods of Control Systems


Book Description

These Proceedings contain a selection of papers presented at the first IFAC Symposium on Design Methods of Control Systems. The volume contains three plenary papers and 97 technical papers, the latter classified under 15 section headings, as listed in the contents.




Control Theory of Partial Differential Equations


Book Description

The field of control theory in PDEs has broadened considerably as more realistic models have been introduced and investigated. This book presents a broad range of recent developments, new discoveries, and mathematical tools in the field. The authors discuss topics such as elasticity, thermo-elasticity, aero-elasticity, interactions between fluids a




Finite Element Solution of Boundary Value Problems


Book Description

Finite Element Solution of Boundary Value Problems: Theory and Computation provides an introduction to both the theoretical and computational aspects of the finite element method for solving boundary value problems for partial differential equations. This book is composed of seven chapters and begins with surveys of the two kinds of preconditioning techniques, one based on the symmetric successive overrelaxation iterative method for solving a system of equations and a form of incomplete factorization. The subsequent chapters deal with the concepts from functional analysis of boundary value problems. These topics are followed by discussions of the Ritz method, which minimizes the quadratic functional associated with a given boundary value problem over some finite-dimensional subspace of the original space of functions. Other chapters are devoted to direct methods, including Gaussian elimination and related methods, for solving a system of linear algebraic equations. The final chapter continues the analysis of preconditioned conjugate gradient methods, concentrating on applications to finite element problems. This chapter also looks into the techniques for reducing rounding errors in the iterative solution of finite element equations. This book will be of value to advanced undergraduates and graduates in the areas of numerical analysis, mathematics, and computer science, as well as for theoretically inclined workers in engineering and the physical sciences.




Fractional Differential Equations


Book Description

This graduate textbook provides a self-contained introduction to modern mathematical theory on fractional differential equations. It addresses both ordinary and partial differential equations with a focus on detailed solution theory, especially regularity theory under realistic assumptions on the problem data. The text includes an extensive bibliography, application-driven modeling, extensive exercises, and graphic illustrations throughout to complement its comprehensive presentation of the field. It is recommended for graduate students and researchers in applied and computational mathematics, particularly applied analysis, numerical analysis and inverse problems.




Analysis and Numerics of Partial Differential Equations


Book Description

This volume is a selection of contributions offered by friends, collaborators, past students in memory of Enrico Magenes. The first part gives a wide historical perspective of Magenes' work in his 50-year mathematical career; the second part contains original research papers, and shows how ideas, methods, and techniques introduced by Magenes and his collaborators still have an impact on the current research in Mathematics.