Nonthermal Processing Technologies for Food


Book Description

Nonthermal Processing Technologies for Food offers a comprehensive review of nonthermal processing technologies that are commercial, emerging or over the horizon. In addition to the broad coverage, leading experts in each technology serve as chapter authors to provide depth of coverage. Technologies covered include: physical processes, such as high pressure processing (HPP); electromagnetic processes, such as pulsed electric field (PEF), irradiation, and UV treatment; other nonthermal processes, such as ozone and chlorine dioxide gas phase treatment; and combination processes. Of special interest are chapters that focus on the "pathway to commercialization" for selected emerging technologies where a pathway exists or is clearly identified. These chapters provide examples and case studies of how new and nonthermal processing technologies may be commercialized. Overall, the book provides systematic knowledge to industrial readers, with numerous examples of process design to serve as a reference book. Researchers, professors and upper level students will also find the book a valuable text on the subject.




Novel Thermal and Non-Thermal Technologies for Fluid Foods


Book Description

Chapter 1. Status and Trends of Novel Thermal and Non-Thermal Technologies for Fluid Foods -- Chapter 2. Fluid Dynamics in Novel Thermal and Non-Thermal Processes -- Chapter 3. Fluid Rheology in Novel Thermal and Non-Thermal Processes --Chapter 4. Pulsed Electric Field Processing of Fluid Foods -- Chapter 5. High Pressure Processing of Fluid Foods -- Chapter 6. Ultrasound Processing of Fluid Foods -- Chapter 7. Irradiation of Fluid Foods -- Chapter 8. Ultraviolet and Pulsed Light Processing of Fluid Foods -- Chapter 9. Ozone Processing of Fluid Foods -- Chapter 10. Dense Phase Carbon Dioxide Processing of Fluid Foods -- Chapter 11. Ohmic Heating of Fluid Foods -- Chapter 12. Microwave Heating of Fluid Foods -- Chapter 13. Infrared Heating of Fluid Foods -- Chapter 14. Modelling the Kinetics of Microbial and Quality Attributes of Fluid Food during Novel Thermal and Non-Thermal Processes -- Chapter 15. Regulatory and Legislative issues for Thermal and Non-Thermal Technologies: An EU Pers ...




Non-Thermal Processing Technologies for the Fruit and Vegetable Industry


Book Description

Fruits and vegetables rapidly spoil due to growth of microorganisms, which further render them unsafe for human consumption. The traditional methods of food preservation, which involves drying, canning, salting, curing, and chemical preservation, can significantly affect food quality by diminishing nutrients during heat processing. This can alter the texture of the products, leave chemical residues in the final processed products, which in turn has greater impact over consumers' safety and health concerns. To combat this problem, various current non-thermal food processing techniques can be employed in fruit and vegetable processing industries to enhance consumer satisfaction for delivering wholesome food products to the market, thus increasing demand. Non-Thermal Processing Technologies for the Fruit and Vegetable Industry introduces the various non-thermal food processing techniques especially employed for fruits and vegetables processing industries; it deals with the effect of several non-thermal processing techniques on quality aspects of processed fruits and vegetable products and keeping quality and consumer acceptability. Key Features: Describes the high-pressure processing techniques employed for processing fruit and vegetable based beverages Discusses the safety aspects of using various innovative non-thermal based technologies for the fruits and vegetables processing industries. Explains ozone application, cold plasma, ultrasound and UV irradiation for fruits and vegetables with their advantages, disadvantages, process operations, mechanism for microbes in activation etc. Presents the commercially viable and economically feasible non-thermal processing technologies for fruit and vegetable industry. This book addresses professors, scientists, food engineers, research scholars, students and industrial personnel for stability enhancement of fruit- and vegetable-based food products by using novel non-thermal food processing techniques. Readers will come to know the current and emerging trends in use of non-thermal processing techniques for its application in several fruit- and vegetable-based food processing industries.




Food Formulation


Book Description

Reviews innovative processing techniques and recent developments in food formulation, identification, and utilization of functional ingredients Food Formulation: Novel Ingredients and Processing Techniques is a comprehensive and up-to-date account of novel food ingredients and new processing techniques used in advanced commercial food formulations. This unique volume will help students and industry professionals alike in understanding the current trends, emerging technologies, and their impact on the food formulation techniques. Contributions from leading academic and industrial experts provide readers with informed and relevant insights on using the latest technologies and production processes for new product development and reformulations. The text first describes the basis of a food formulation, including smart protein and starch ingredients, healthy ingredients such as salt and sugar replacers, and interactions within the food components. Emphasizing operational principles, the book reviews state-of-the-art 3D printing technology, encapsulation and a range of emerging technologies including high pressure, pulsed electric field, ultrasound and supercritical fluid extraction. The final chapters discuss recent developments and trends in food formulation, from foods that target allergies and intolerance, to prebiotic and probiotic food formulation designed to improve gut health. A much-needed reference on novel sourcing of food ingredients, processing technologies, and application, this book: Explores new food ingredients as well as impact of processing on ingredient interactions Describes new techniques that improve the flavor and acceptability of functional food ingredients Reviews mathematical tools used for recipe formulation, process control and consumer studies Includes regulations and legislations around tailor-made food products Food Formulation: Novel Ingredients and Processing Techniques is an invaluable resource for students, educators, researchers, food technologists, and professionals, engineers and scientists across the food industry.




Novel Food Processing Technologies


Book Description

Reflecting current trends in alternative food processing and preservation, this reference explores the most recent applications in pulsed electric field (PEF) and high-pressure technologies, food microbiology, and modern thermal and nonthermal operations to prevent the occurrence of food-borne pathogens, extend the shelf-life of foods, and improve




Thermal Technologies in Food Processing


Book Description

New packaging media such as flexible trays, pouches, and glass containers have superceded traditional canning with great results. The availability of such packaging opportunities has created the demand for products of more challenging rheological behavior that may contain differing degrees of particulate material and hence the need for new designs of heat exchanger. While the primary concern of food manufacturers is the production of safe foods, there is little market for low quality foods no matter how safe they are. The need to maximize process efficiency and final product quality has led to a number of new developments, including refinements in existing technologies and the emergence of new "minimal" techniques. Thermal Technologies in Food Processing reviews all these key developments and looks at future trends, providing an invaluable resource for all food processors.




Food Processing


Book Description

FOOD PROCESSING Food Processing: Principles and Applications, Second Edition is the fully revised new edition of this best-selling food technology title. Advances in food processing continue to take place as food scientists and food engineers adapt to the challenges imposed by emerging pathogens, environmental concerns, shelf life, quality and safety, as well as the dietary needs and demands of humans. In addition to covering food processing principles that have long been essential to food quality and safety, this edition of Food Processing: Principles and Applications, unlike the former edition, covers microbial/enzyme inactivation kinetics, alternative food processing technologies as well as environmental and sustainability issues currently facing the food processing industry. The book is divided into two sections, the first focusing on principles of food processing and handling, and the second on processing technologies and applications. As a hands-on guide to the essential processing principles and their applications, covering the theoretical and applied aspects of food processing in one accessible volume, this book is a valuable tool for food industry professionals across all manufacturing sectors, and serves as a relevant primary or supplemental text for students of food science.




Enzymes in Fruit and Vegetable Processing


Book Description

The enzyme market for the fruit and vegetable industry has grown exponentially in recent years, and while many books covering enzymes currently exist on the market, none offer the specialized focus on fruits and vegetables like this one. With contributions from more than 25 contributors who are experts in their respective fields, Enzymes in Fruit a




Innovative Technologies in Beverage Processing


Book Description

An in-depth look at new and emerging technologies for non-alcoholic beverage manufacturing The non-alcoholic beverage market is the fastest growing segment of the functional food industry worldwide. Consistent with beverage consumption trends generally, the demand among consumers of these products is for high-nutrient drinks made from natural, healthy ingredients, free of synthetic preservatives and artificial flavor and color enhancers. Such drinks require specialized knowledge of exotic ingredients, novel processing techniques, and various functional ingredients. The latest addition to the critically acclaimed IFST Advances in Food Science series this book brings together edited contributions from internationally recognized experts in their fields who offer insights and analysis of the latest developments in non-alcoholic beverage manufacture. Topics covered include juices made from pome fruits, citrus fruits, prunus fruits, vegetables, exotic fruits, berries, juice blends and non-alcoholic beverages, including grain-based beverages, soups and functional beverages. Waste and by-products generated in juice and non-alcoholic beverage sector are also addressed. Offers fresh insight and analysis of the latest developments in non-alcoholic beverage manufacture from leading international experts Covers all product segments of the non-alcoholic beverage market, including juices, vegetable blends, grain-based drinks, and alternative beverages Details novel thermal and non-thermal technologies that ensure high-quality nutrient retention while extending product shelf life Written with the full support of The Institute of Food Science and Technology (IFST), the leading qualifying body for food professionals in Europe Innovative Technologies in Beverage Processing is a valuable reference/working resource for food scientists and engineers working in the non-alcoholic beverage industry, as well as academic researchers in industrial food processing and nutrition.




Dense Phase Carbon Dioxide


Book Description

Dense phase carbon dioxide (DPCD) is a non-thermal method for food and pharmaceutical processing that can ensure safe products with minimal nutrient loss and better preserved quality attributes. Its application is quite different than, for example, supercritical extraction with CO 2 where the typical solubility of materials in CO 2 is in the order of 1% and therefore requires large volumes of CO 2. In contrast, processing with DPCD requires much less CO 2 (between 5 to 8% CO 2 by weight) and the pressures used are at least one order of magnitude less than those typically used in ultra high pressure (UHP) processing. There is no noticeable temperature increase due to pressurization, and typical process temperatures are around 40°C. DPCD temporarily reduces the pH of liquid foods and because oxygen is removed from the environment, and because the temperature is not high during the short process time (typically about five minutes in continuous systems), nutrients, antioxidant activity, and vitamins are much better preserved than with thermal treatments. In pharmaceutical applications, DPCD facilitates the production of micronized powders of controlled particle size and distribution. Although the capital and operating costs are higher than that of thermal treatments, they are much lower than other non-thermal technology operations. This book is the first to bring together the significant amount of research into DPCD and highlight its effectiveness against microorganisms and enzymes as well as its potential in particle engineering. It is directed at food and pharmaceutical industry scientists and technologists working with DPCD and other traditional or non-thermal technologies that can potentially be used in conjunction with DPCD. It will also be of interest to packaging specialists and regulatory agencies.