Noncommutative Spacetimes


Book Description

There are many approaches to noncommutative geometry and to its use in physics. This volume addresses the subject by combining the deformation quantization approach, based on the notion of star-product, and the deformed quantum symmetries methods, based on the theory of quantum groups. The aim of this work is to give an introduction to this topic and to prepare the reader to enter the research field quickly. The order of the chapters is "physics first": the mathematics follows from the physical motivations (e.g. gauge field theories) in order to strengthen the physical intuition. The new mathematical tools, in turn, are used to explore further physical insights. A last chapter has been added to briefly trace Julius Wess' (1934-2007) seminal work in the field.




Approaches to Quantum Gravity


Book Description

Containing contributions from leading researchers in this field, this book provides a complete overview of this field from the frontiers of theoretical physics research for graduate students and researchers. It introduces the most current approaches to this problem, and reviews their main achievements.




2001: A Relativistic Spacetime Odyssey: Experiments And Theoretical Viewpoints On General Relativity And Quantum Gravity - Proceedings Of The 25th Johns Hopkins Workshop On Current Problems In Particle Theory


Book Description

This volume offers a comprehensive overview of our understanding of gravity at both the experimental and the theoretical level. Critical reviews by experts cover topics ranging from astrophysics (anisotropies in the cosmic microwave background, gamma ray bursts, neutron stars and astroparticles), cosmology, the status of gravitational wave sources and detectors, verification of Newton's law at short distances, the equivalence principle, gravito-magnetism, measurement theory, time machines and the foundations of Einstein's theory, to string theory and loop quantum gravity.




Eleventh Marcel Grossmann Meeting, The: On Recent Developments In Theoretical And Experimental General Relativity, Gravitation And Relativistic Field Theories (In 3 Volumes) - Proceedings Of The Mg11 Meeting On General Relativity


Book Description

The Marcel Grossmann Meetings are three-yearly forums that meet to discuss recent advances in gravitation, general relativity and relativistic field theories, emphasizing their mathematical foundations, physical predictions and experimental tests. These meetings aim to facilitate the exchange of ideas among scientists, to deepen our understanding of space-time structures, and to review the status of ongoing experiments and observations testing Einstein's theory of gravitation either from ground or space-based experiments. Since the first meeting in 1975 in Trieste, Italy, which was established by Remo Ruffini and Abdus Salam, the range of topics presented at these meetings has gradually widened to accommodate issues of major scientific interest, and attendance has grown to attract more than 900 participants from over 80 countries.This proceedings volume of the eleventh meeting in the series, held in Berlin in 2006, highlights and records the developments and applications of Einstein's theory in diverse areas ranging from fundamental field theories to particle physics, astrophysics and cosmology, made possible by unprecedented technological developments in experimental and observational techniques from space, ground and underground observatories. It provides a broad sampling of the current work in the field, especially relativistic astrophysics, including many reviews by leading figures in the research community.




2001, a Relativistic Spacetime Odyssey


Book Description

This volume offers a comprehensive overview of our understanding of gravity at both the experimental and the theoretical level. Critical reviews by experts cover topics ranging from astrophysics (anisotropies in the cosmic microwave background, gamma ray bursts, neutron stars and astroparticles), cosmology, the status of gravitational wave sources and detectors, verification of Newton's law at short distances, the equivalence principle, gravito-magnetism, measurement theory, time machines and the foundations of Einstein's theory, to string theory and loop quantum gravity.




Clifford Algebras


Book Description

The invited papers in this volume provide a detailed examination of Clifford algebras and their significance to analysis, geometry, mathematical structures, physics, and applications in engineering. While the papers collected in this volume require that the reader possess a solid knowledge of appropriate background material, they lead to the most current research topics. With its wide range of topics, well-established contributors, and excellent references and index, this book will appeal to graduate students and researchers.




Planck Scale Effects in Astrophysics and Cosmology


Book Description

This volume is composed of extensive and detailed notes from the lectures given at the 40th Karpacz Winter School. This school focussed on quantum gravity phenomenology with emphasis on its relation to observational astrophysics and cosmology. These notes have been carefully edited with the aim to give advanced students and young researchers a balanced and accessible introduction to a rather heavily mathematical subject.




Special Relativity


Book Description

After about a century of success, physicists feel the need to probe the limits of validity of special-relativity base theories. This book is the outcome of a special seminar held on this topic. The authors gather in a single volume an extensive collection of introductions and reviews of the various facets involved, and also includes detailed discussion of philosophical and historical aspects.




In Search of the Riemann Zeros


Book Description

Formulated in 1859, the Riemann Hypothesis is the most celebrated and multifaceted open problem in mathematics. In essence, it states that the primes are distributed as harmoniously as possible--or, equivalently, that the Riemann zeros are located on a single vertical line, called the critical line.




Geometric, Algebraic and Topological Methods for Quantum Field Theory


Book Description

Based on lectures held at the 7th Villa de Leyva summer school, this book presents an introduction to topics of current interest in the interface of geometry, topology and physics. It is aimed at graduate students in physics or mathematics with interests in geometric, algebraic as well as topological methods and their applications to quantum field theory. This volume contains the written notes corresponding to lectures given by experts in the field. They cover current topics of research in a way that is suitable for graduate students of mathematics or physics interested in the recent developments and interactions between geometry, topology and physics. The book also contains contributions by younger participants, displaying the ample range of topics treated in the school. A key feature of the present volume is the provision of a pedagogical presentation of rather advanced topics, in a way which is suitable for both mathematicians and physicists.