Noncompact Lie Groups and Some of Their Applications


Book Description

During the past two decades representations of noncompact Lie groups and Lie algebras have been studied extensively, and their application to other branches of mathematics and to physical sciences has increased enormously. Several theorems which were proved in the abstract now carry definite mathematical and physical sig nificance. Several physical observations which were not understood before are now explained in terms of models based on new group-theoretical structures such as dy namical groups and Lie supergroups. The workshop was designed to bring together those mathematicians and mathematical physicists who are actively working in this broad spectrum of research and to provide them with the opportunity to present their recent results and to discuss the challenges facing them in the many problems that remain. The objective of the workshop was indeed well achieved. This book contains 31 lectures presented by invited participants attending the NATO Advanced Research Workshop held in San Antonio, Texas, during the week of January 3-8, 1993. The introductory article by the editors provides a brief review of the concepts underlying these lectures (cited by author [*]) and mentions some of their applications. The articles in the book are grouped under the following general headings: Lie groups and Lie algebras, Lie superalgebras and Lie supergroups, and Quantum groups, and are arranged in the order in which they are cited in the introductory article. We are very thankful to Dr.




Lie Groups, Lie Algebras, and Some of Their Applications


Book Description

This text introduces upper-level undergraduates to Lie group theory and physical applications. It further illustrates Lie group theory's role in several fields of physics. 1974 edition. Includes 75 figures and 17 tables, exercises and problems.




Lie Groups


Book Description

This book is intended for a one-year graduate course on Lie groups and Lie algebras. The book goes beyond the representation theory of compact Lie groups, which is the basis of many texts, and provides a carefully chosen range of material to give the student the bigger picture. The book is organized to allow different paths through the material depending on one's interests. This second edition has substantial new material, including improved discussions of underlying principles, streamlining of some proofs, and many results and topics that were not in the first edition. For compact Lie groups, the book covers the Peter–Weyl theorem, Lie algebra, conjugacy of maximal tori, the Weyl group, roots and weights, Weyl character formula, the fundamental group and more. The book continues with the study of complex analytic groups and general noncompact Lie groups, covering the Bruhat decomposition, Coxeter groups, flag varieties, symmetric spaces, Satake diagrams, embeddings of Lie groups and spin. Other topics that are treated are symmetric function theory, the representation theory of the symmetric group, Frobenius–Schur duality and GL(n) × GL(m) duality with many applications including some in random matrix theory, branching rules, Toeplitz determinants, combinatorics of tableaux, Gelfand pairs, Hecke algebras, the "philosophy of cusp forms" and the cohomology of Grassmannians. An appendix introduces the reader to the use of Sage mathematical software for Lie group computations.




Lie Groups, Physics, and Geometry


Book Description

Describing many of the most important aspects of Lie group theory, this book presents the subject in a 'hands on' way. Rather than concentrating on theorems and proofs, the book shows the applications of the material to physical sciences and applied mathematics. Many examples of Lie groups and Lie algebras are given throughout the text. The relation between Lie group theory and algorithms for solving ordinary differential equations is presented and shown to be analogous to the relation between Galois groups and algorithms for solving polynomial equations. Other chapters are devoted to differential geometry, relativity, electrodynamics, and the hydrogen atom. Problems are given at the end of each chapter so readers can monitor their understanding of the materials. This is a fascinating introduction to Lie groups for graduate and undergraduate students in physics, mathematics and electrical engineering, as well as researchers in these fields.







Lie Semigroups and their Applications


Book Description

Subsemigroups of finite-dimensional Lie groups that are generated by one-parameter semigroups are the subject of this book. It covers basic Lie theory for such semigroups and some closely related topics. These include ordered homogeneous manifolds, where the order is defined by a field of cones, invariant cones in Lie algebras and associated Ol'shanskii semigroups. Applications to representation theory, symplectic geometry and Hardy spaces are also given. The book is written as an efficient guide for those interested in subsemigroups of Lie groups and their applications in various fields of mathematics (see the User's guide at the end of the Introduction). Since it is essentially self-contained and leads directly to the core of the theory, the first part of the book can also serve as an introduction to the subject. The reader is merely expected to be familiar with the basic theory of Lie groups and Lie algebras.




An Introduction to Lie Groups and Lie Algebras


Book Description

This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.







Non-perturbative Qft Methods And Their Applications, Procs Of The Johns Hopkins Workshop On Current Problems In Particle Theory 24


Book Description

Contents:Conformal Boundary Conditions — and What They Teach Us (V B Petkova & J-B Zuber)A Physical Basis for the Entropy of the AdS3 Black Hole (S Fernando & F Mansouri)Spinon Formulation of the Kondo Problem (A Klümper & J R Reyes-Martinez)Boundary Integrable Quantum Field Theories (P Dorey)Finite Size Effects in Integrable Quantum Field Theories (F Ravanini)Nonperturbative Analysis of the Two-Frequency Sine-Gordon Model (Z Bajnok et al.)Screening in Hot SU(2) Gauge Theory and Propagators in 3D Adjoint Higgs Model (A Cucchieri et al.)Effective Average Action in Statistical Physics and Quantum Field Theory (Ch Wetterich)Phase Transitions in Non-Hermitean Matrix Models and the “Single Ring” Theorem (J Feinberg et al.)Unraveling the Mystery of Flavor (A Falk)The Nahm Transformation on R2 X T2 (C Ford)A 2D Integrable Axion Model and Target Space Duality (P Forgács)Supersymmetric Ward Identities and Chiral Symmetry Breaking in SUSY QED (M L Walker)and other papers Readership: Theoretical, mathematical and high energy physicists. Keywords:




p-Adic Lie Groups


Book Description

Manifolds over complete nonarchimedean fields together with notions like tangent spaces and vector fields form a convenient geometric language to express the basic formalism of p-adic analysis. The volume starts with a self-contained and detailed introduction to this language. This includes the discussion of spaces of locally analytic functions as topological vector spaces, important for applications in representation theory. The author then sets up the analytic foundations of the theory of p-adic Lie groups and develops the relation between p-adic Lie groups and their Lie algebras. The second part of the book contains, for the first time in a textbook, a detailed exposition of Lazard's algebraic approach to compact p-adic Lie groups, via his notion of a p-valuation, together with its application to the structure of completed group rings.